論文の概要: IPIGuard: A Novel Tool Dependency Graph-Based Defense Against Indirect Prompt Injection in LLM Agents
- arxiv url: http://arxiv.org/abs/2508.15310v1
- Date: Thu, 21 Aug 2025 07:08:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-22 16:26:46.21997
- Title: IPIGuard: A Novel Tool Dependency Graph-Based Defense Against Indirect Prompt Injection in LLM Agents
- Title(参考訳): IPIGuard: LLMエージェントの間接プロンプト注入に対する新しいツール依存グラフベースの防御
- Authors: Hengyu An, Jinghuai Zhang, Tianyu Du, Chunyi Zhou, Qingming Li, Tao Lin, Shouling Ji,
- Abstract要約: 大規模言語モデル(LLM)エージェントは現実世界のアプリケーションに広くデプロイされており、複雑なタスクのために外部データを検索し操作するためのツールを活用している。
信頼できないデータソースと対話する場合、ツールレスポンスには、エージェントの動作に秘密裏に影響を与え、悪意のある結果をもたらすインジェクションが含まれている可能性がある。
我々はIPIGuardと呼ばれる新しい防御タスク実行パラダイムを提案し、ソースにおける悪意あるツール呼び出しを防止する。
- 参考スコア(独自算出の注目度): 33.775221377823925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language model (LLM) agents are widely deployed in real-world applications, where they leverage tools to retrieve and manipulate external data for complex tasks. However, when interacting with untrusted data sources (e.g., fetching information from public websites), tool responses may contain injected instructions that covertly influence agent behaviors and lead to malicious outcomes, a threat referred to as Indirect Prompt Injection (IPI). Existing defenses typically rely on advanced prompting strategies or auxiliary detection models. While these methods have demonstrated some effectiveness, they fundamentally rely on assumptions about the model's inherent security, which lacks structural constraints on agent behaviors. As a result, agents still retain unrestricted access to tool invocations, leaving them vulnerable to stronger attack vectors that can bypass the security guardrails of the model. To prevent malicious tool invocations at the source, we propose a novel defensive task execution paradigm, called IPIGuard, which models the agents' task execution process as a traversal over a planned Tool Dependency Graph (TDG). By explicitly decoupling action planning from interaction with external data, IPIGuard significantly reduces unintended tool invocations triggered by injected instructions, thereby enhancing robustness against IPI attacks. Experiments on the AgentDojo benchmark show that IPIGuard achieves a superior balance between effectiveness and robustness, paving the way for the development of safer agentic systems in dynamic environments.
- Abstract(参考訳): 大規模言語モデル(LLM)エージェントは現実世界のアプリケーションに広くデプロイされており、複雑なタスクのために外部データを検索し操作するためのツールを活用している。
しかし、信頼できないデータソース(例えば、公開ウェブサイトから情報をフェッチするなど)と対話する場合、ツール応答には、エージェントの動作に秘密裏に影響を与え、悪意のある結果をもたらすインジェクションが含まれ、IPI(Indirect Prompt Injection)と呼ばれる脅威がある。
既存の防御は、通常、先進的なプロンプト戦略や補助的な検出モデルに依存している。
これらの手法はいくつかの効果を示したが、基本的にはモデル固有のセキュリティに関する仮定に依存しており、エージェントの振る舞いに構造的な制約が欠けている。
その結果、エージェントは依然としてツール呼び出しへの制限のないアクセスを保持し、モデルのセキュリティガードレールをバイパスできる強力な攻撃ベクタに対して脆弱なままである。
そこで本研究では,エージェントのタスク実行プロセスをTDG(Tool Dependency Graph)のトラバースとしてモデル化する,IPIGuardと呼ばれる新しい防御タスク実行パラダイムを提案する。
アクションプランニングを外部データとのインタラクションから明示的に分離することにより、IPIGuardはインジェクションによって引き起こされる意図しないツール呼び出しを大幅に削減し、IPI攻撃に対する堅牢性を高める。
AgentDojoベンチマークの実験によると、IPIGuardは、動的環境におけるより安全なエージェントシステムを開発するための道を開くことで、有効性と堅牢性の間のバランスを向上している。
関連論文リスト
- BlindGuard: Safeguarding LLM-based Multi-Agent Systems under Unknown Attacks [58.959622170433725]
BlindGuardは、攻撃固有のラベルや悪意のある振る舞いに関する事前の知識を必要とせずに学習する、教師なしの防御方法である。
BlindGuardはマルチエージェントシステムにまたがる多様な攻撃タイプ(即時注入、メモリ中毒、ツール攻撃)を効果的に検出する。
論文 参考訳(メタデータ) (2025-08-11T16:04:47Z) - Attractive Metadata Attack: Inducing LLM Agents to Invoke Malicious Tools [10.086284534400658]
大規模言語モデル(LLM)エージェントは、外部ツールを活用することで複雑な推論と意思決定において顕著な能力を示した。
我々はこれを、悪意のあるツールをLLMエージェントによって優先的に選択できる、新しくてステルスな脅威サーフェスとして認識する。
我々は,非常に魅力的だが構文的かつ意味論的に有効なツールメタデータを生成するブラックボックス・イン・コンテキスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-04T06:38:59Z) - AgentArmor: Enforcing Program Analysis on Agent Runtime Trace to Defend Against Prompt Injection [8.266563350981984]
大きな言語モデル(LLM)エージェントは、自然言語推論と外部ツールの実行を組み合わせることで、さまざまな問題を解決するための強力な新しいパラダイムを提供する。
本研究では,エージェントランタイムトレースを解析可能なセマンティクスを用いた構造化プログラムとして扱う新しい知見を提案する。
本稿では,エージェントトレースをグラフ中間表現に基づく構造化プログラム依存表現に変換するプログラム解析フレームワークであるAgentArmorを提案する。
論文 参考訳(メタデータ) (2025-08-02T07:59:34Z) - DRIFT: Dynamic Rule-Based Defense with Injection Isolation for Securing LLM Agents [33.40201949055383]
大規模言語モデル(LLM)は、強力な推論と計画能力のため、エージェントシステムの中心となってきています。
この相互作用は、外部ソースからの悪意のある入力がエージェントの振る舞いを誤解させる可能性がある、インジェクション攻撃のリスクも引き起こす。
本稿では,信頼に値するエージェントシステムのための動的ルールベースの分離フレームワークを提案する。
論文 参考訳(メタデータ) (2025-06-13T05:01:09Z) - AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents [54.29555239363013]
本稿では,間接的なインジェクション脆弱性を自動的に検出し,悪用するための汎用的なブラックボックスファジリングフレームワークであるAgentVigilを提案する。
我々はAgentVigilをAgentDojoとVWA-advの2つの公開ベンチマークで評価し、o3-miniとGPT-4oに基づくエージェントに対して71%と70%の成功率を達成した。
攻撃を現実世界の環境に適用し、悪質なサイトを含む任意のURLに誘導するエージェントをうまく誘導する。
論文 参考訳(メタデータ) (2025-05-09T07:40:17Z) - MELON: Provable Defense Against Indirect Prompt Injection Attacks in AI Agents [60.30753230776882]
LLMエージェントは間接的プロンプトインジェクション(IPI)攻撃に対して脆弱であり、ツール検索情報に埋め込まれた悪意のあるタスクはエージェントをリダイレクトして不正なアクションを取ることができる。
マスク機能によって修正されたマスク付きユーザでエージェントの軌道を再実行することで攻撃を検知する新しいIPIディフェンスであるMELONを提案する。
論文 参考訳(メタデータ) (2025-02-07T18:57:49Z) - The Task Shield: Enforcing Task Alignment to Defend Against Indirect Prompt Injection in LLM Agents [6.829628038851487]
大きな言語モデル(LLM)エージェントは、ツール統合を通じて複雑な現実世界のタスクを実行できる対話アシスタントとして、ますます多くデプロイされている。
特に間接的なプロンプトインジェクション攻撃は、外部データソースに埋め込まれた悪意のある命令が、エージェントを操作してユーザの意図を逸脱させる、重大な脅威となる。
我々は,エージェントのセキュリティが有害な行為を防止し,タスクアライメントを確保するためには,すべてのエージェントアクションをユーザ目的に役立てる必要がある,という新たな視点を提案する。
論文 参考訳(メタデータ) (2024-12-21T16:17:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。