論文の概要: Enhancing Forecasting with a 2D Time Series Approach for Cohort-Based Data
- arxiv url: http://arxiv.org/abs/2508.15369v1
- Date: Thu, 21 Aug 2025 08:53:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-22 16:26:46.248148
- Title: Enhancing Forecasting with a 2D Time Series Approach for Cohort-Based Data
- Title(参考訳): コホートに基づくデータに対する2次元時系列アプローチによる予測の強化
- Authors: Yonathan Guttel, Orit Moradov, Nachi Lieder, Asnat Greenstein-Messica,
- Abstract要約: 本稿では、時間とともにコホートな振る舞いを統合し、小さなデータ環境における課題に対処する新しい2次元時系列予測モデルを提案する。
複数の実世界のデータセットを用いてその有効性を実証し、参照モデルと比較して精度と適応性に優れた性能を示す。
- 参考スコア(独自算出の注目度): 0.2324913904215885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel two-dimensional (2D) time series forecasting model that integrates cohort behavior over time, addressing challenges in small data environments. We demonstrate its efficacy using multiple real-world datasets, showcasing superior performance in accuracy and adaptability compared to reference models. The approach offers valuable insights for strategic decision-making across industries facing financial and marketing forecasting challenges.
- Abstract(参考訳): 本稿では、時間とともにコホートな振る舞いを統合し、小さなデータ環境における課題に対処する新しい2次元時系列予測モデルを提案する。
複数の実世界のデータセットを用いてその有効性を実証し、参照モデルと比較して精度と適応性に優れた性能を示す。
このアプローチは、財務およびマーケティング予測の課題に直面している業界全体にわたる戦略的意思決定に貴重な洞察を提供する。
関連論文リスト
- Empowering Time Series Analysis with Synthetic Data: A Survey and Outlook in the Era of Foundation Models [104.17057231661371]
時系列解析は複雑なシステムの力学を理解するために重要である。
基本モデルの最近の進歩はタスク非依存の時系列基礎モデル (TSFM) と大規模言語モデルベース時系列モデル (TSLLM) につながっている。
彼らの成功は、規制、多様性、品質、量制約のために構築が困難である、大規模で多様で高品質なデータセットに依存する。
本調査では,TSFMとTLLLMの合成データの総合的なレビュー,データ生成戦略の分析,モデル事前学習におけるそれらの役割,微調整,評価,今後の研究方向性の特定について述べる。
論文 参考訳(メタデータ) (2025-03-14T13:53:46Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
SRモデルの性能法則は,モデルの性能とデータ品質の関係を理論的に調査し,モデル化することを目的としている。
データ品質を評価するために、従来のデータ量メトリクスと比較して、より曖昧なアプローチを示すために、近似エントロピー(ApEn)を提案する。
論文 参考訳(メタデータ) (2024-11-30T10:56:30Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - Data Augmentation for Multivariate Time Series Classification: An Experimental Study [1.5390962520179197]
これらのデータセットのサイズは限られていますが、RocketとInceptionTimeモデルを使用して、13のデータセットのうち10の分類精度を向上しました。
これは、コンピュータビジョンで見られる進歩と並行して、効果的なモデルを訓練する上で、十分なデータの重要性を強調している。
論文 参考訳(メタデータ) (2024-06-10T17:58:02Z) - Recency-Weighted Temporally-Segmented Ensemble for Time-Series Modeling [0.0]
プロセス産業における時系列モデリングは、複雑で多面的で進化するデータ特性を扱うという課題に直面している。
マルチステップ予測のための新しいチャンクベースアプローチであるRecency-Weighted Temporally-Segmented(ReWTS)アンサンブルモデルを導入する。
ノルウェーの排水処理場と飲料水処理場からの2年間のデータをもとに,比較分析を行った。
論文 参考訳(メタデータ) (2024-03-04T16:00:35Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
本稿では,実世界のデータでしばしば発生する課題に対処するために,時系列計算と予測のための新しいモデリング手法を提案する。
本手法はシリーズの進化力学の連続時間依存モデルに依存する。
メタラーニングアルゴリズムによって駆動される変調機構は、観測されたタイムウインドウを超えて、見えないサンプルや外挿への適応を可能にする。
論文 参考訳(メタデータ) (2023-06-09T13:20:04Z) - Mlinear: Rethink the Linear Model for Time-series Forecasting [9.841293660201261]
Mlinearは、主に線形層に基づく単純だが効果的な方法である。
複数のデータセット上で広く使われている平均二乗誤差(MSE)を大幅に上回る新しい損失関数を導入する。
提案手法は,PatchTSTを336列長入力で21:3,512列長入力で29:10で有意に上回った。
論文 参考訳(メタデータ) (2023-05-08T15:54:18Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。