論文の概要: MorphNAS: Differentiable Architecture Search for Morphologically-Aware Multilingual NER
- arxiv url: http://arxiv.org/abs/2508.15836v1
- Date: Tue, 19 Aug 2025 04:48:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-25 16:42:36.104677
- Title: MorphNAS: Differentiable Architecture Search for Morphologically-Aware Multilingual NER
- Title(参考訳): MorphNAS:Morphological-Aware Multilingual NERのための微分可能なアーキテクチャ探索
- Authors: Prathamesh Devadiga, Omkaar Jayadev Shetty, Hiya Nachnani, Prema R,
- Abstract要約: MorphNASは、これらの課題に対処するために設計された、微分可能なニューラルアーキテクチャ検索フレームワークである。
言語固有の形態に合わせて最適なマイクロアーキテクチャ要素を自動的に識別する。
MorphNASは多言語NLPモデルの習熟度を最大化することを目的としており、これらの複雑な言語の理解と処理を改善している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Morphologically complex languages, particularly multiscript Indian languages, present significant challenges for Natural Language Processing (NLP). This work introduces MorphNAS, a novel differentiable neural architecture search framework designed to address these challenges. MorphNAS enhances Differentiable Architecture Search (DARTS) by incorporating linguistic meta-features such as script type and morphological complexity to optimize neural architectures for Named Entity Recognition (NER). It automatically identifies optimal micro-architectural elements tailored to language-specific morphology. By automating this search, MorphNAS aims to maximize the proficiency of multilingual NLP models, leading to improved comprehension and processing of these complex languages.
- Abstract(参考訳): 形態学的に複雑な言語、特にマルチスクリプト・インディアン言語は、自然言語処理(NLP)において重要な課題を提示している。
この研究は、これらの課題に対処するために設計された、新しい差別化可能なニューラルアーキテクチャ検索フレームワークであるMorphNASを紹介している。
MorphNASは、名前付きエンティティ認識(NER)のためにニューラルネットワークを最適化するために、スクリプトタイプや形態的複雑性といった言語メタ機能を統合することで、微分可能なアーキテクチャ検索(DARTS)を強化する。
言語固有の形態に合わせて最適なマイクロアーキテクチャ要素を自動的に識別する。
この検索を自動化することで、MorphNASは多言語NLPモデルの習熟度を最大化し、これらの複雑な言語の理解と処理を改善することを目指している。
関連論文リスト
- A Morphology-Based Investigation of Positional Encodings [46.667985003225496]
形態と語順は密接に結びついており、後者は位置符号化によってトランスフォーマーモデルに組み込まれている。
言語の形態的複雑さと、事前訓練された言語モデルにおける位置エンコーディングの利用との間には相関があるのだろうか?
本研究は,22の言語と5の下流タスクを対象とする,この問題に対処する最初の研究である。
論文 参考訳(メタデータ) (2024-04-06T07:10:47Z) - UniMorph 4.0: Universal Morphology [104.69846084893298]
本稿は,過去2年間のいくつかの前線における展開と改善について述べる。
多くの言語学者による共同作業により、30の絶滅危惧言語を含む67の新しい言語が追加された。
前回のUniMorphリリースに合わせて,16言語で形態素セグメンテーションを施したデータベースも拡張した。
論文 参考訳(メタデータ) (2022-05-07T09:19:02Z) - Modeling Target-Side Morphology in Neural Machine Translation: A
Comparison of Strategies [72.56158036639707]
形態的に豊かな言語は機械翻訳に困難をもたらす。
多数の異なる屈折する単語曲面は、より大きな語彙を必要とする。
いくつかの頻度の低い用語は、通常、トレーニングコーパスには現れない。
言語的合意は、出力文中の屈折語形間の文法的カテゴリを正しく一致させる必要がある。
論文 参考訳(メタデータ) (2022-03-25T10:13:20Z) - Morphology Without Borders: Clause-Level Morphological Annotation [8.559428282730021]
形態学を単語レベルではなく節レベルの現象と考えることを提案する。
我々は,英語,ドイツ語,トルコ語,ヘブライ語という4つの類型的に異なる言語を対象として,節レベルの形態に関する新しいデータセットを提供する。
実験の結果,節レベルタスクは各単語レベルタスクよりも格段に難しいが,言語間では同等に複雑であることがわかった。
論文 参考訳(メタデータ) (2022-02-25T17:20:28Z) - Low-Dimensional Structure in the Space of Language Representations is
Reflected in Brain Responses [62.197912623223964]
言語モデルと翻訳モデルは,単語の埋め込み,構文的・意味的タスク,将来的な単語埋め込みとの間を円滑に介在する低次元構造を示す。
この表現埋め込みは、各特徴空間が、fMRIを用いて記録された自然言語刺激に対する人間の脳反応にどれだけうまく対応しているかを予測することができる。
これは、埋め込みが脳の自然言語表現構造の一部を捉えていることを示唆している。
論文 参考訳(メタデータ) (2021-06-09T22:59:12Z) - Evaluation of Morphological Embeddings for the Russian Language [0.0]
SkipgramObjectiveで訓練されたモルフォロジーベースの埋め込みは、既存の埋め込みモデル-FastTextを上回っません。
より複雑な、しかしモルフォロジーを知らないモデル、BERTは、単語のモルフォロジーの理解を必要とするタスクで大幅に大きなパフォーマンスを達成することができます。
論文 参考訳(メタデータ) (2021-03-11T11:59:11Z) - Morphological Disambiguation from Stemming Data [1.2183405753834562]
形態学的に豊かな言語であるKinyarwandaは、現在、自動形態素解析のためのツールを欠いている。
我々は、クラウドソーシングを通じて収集された新しいスリーミングデータセットから、Kinyarwandaの動詞形を形態的に曖昧にすることを学ぶ。
本実験により, 茎の屈折特性と形態素関連規則が, 曖昧さの最も識別的な特徴であることが判明した。
論文 参考訳(メタデータ) (2020-11-11T01:44:09Z) - Evaluating Transformer-Based Multilingual Text Classification [55.53547556060537]
我々は,NLPツールが構文的・形態学的に異なる言語で不平等に機能すると主張している。
実験研究を支援するために,単語順と形態的類似度指標を算出した。
論文 参考訳(メタデータ) (2020-04-29T03:34:53Z) - Morphological Word Segmentation on Agglutinative Languages for Neural
Machine Translation [8.87546236839959]
ニューラル機械翻訳(NMT)のソース側における形態素単語分割法を提案する。
形態学の知識を取り入れて、単語構造における言語情報や意味情報を保存し、訓練時の語彙サイズを小さくする。
これは、他の自然言語処理(NLP)タスクのために、単語を集約言語に分割する前処理ツールとして利用することができる。
論文 参考訳(メタデータ) (2020-01-02T10:05:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。