論文の概要: CARFT: Boosting LLM Reasoning via Contrastive Learning with Annotated Chain-of-Thought-based Reinforced Fine-Tuning
- arxiv url: http://arxiv.org/abs/2508.15868v2
- Date: Mon, 08 Sep 2025 10:20:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:03.292415
- Title: CARFT: Boosting LLM Reasoning via Contrastive Learning with Annotated Chain-of-Thought-based Reinforced Fine-Tuning
- Title(参考訳): CARFT: Annotated Chain-of-Thought-based Reinforced Fine-TuningによるLLM推論の強化
- Authors: Wenqiao Zhu, Ji Liu, Rongjuncheng Zhang, Haipang Wu, Yulun Zhang,
- Abstract要約: 注釈付きCoTをベースとしたReinforced Fine-Tuningアプローチ,すなわちTheNameを用いたコントラスト学習を提案し,大規模言語モデルの推論性能を向上させる。
提案手法は、利用可能な注釈付きCoTを十分に活用するだけでなく、教師なし学習信号を付加することにより微調整手順を安定化する。
- 参考スコア(独自算出の注目度): 25.142128256576985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reasoning capability plays a significantly critical role in the the broad applications of Large Language Models (LLMs). To enhance the reasoning performance of LLMs, diverse Reinforcement Learning (RL)-based fine-tuning approaches have been proposed to address the limited generalization capability of LLMs trained solely via Supervised Fine-Tuning (SFT). Despite their effectiveness, two major limitations hinder the advancement of LLMs. First, vanilla RL-based approaches ignore annotated Chain-of-Thought (CoT) and incorporate unstable reasoning path sampling, which typically results in model collapse, unstable training process, and suboptimal performance. Second, existing SFT approaches generally overemphasize the annotated CoT, potentially leading to performance degradation due to insufficient exploitation of potential CoT. In this paper, we propose a Contrastive learning with annotated CoT-based Reinforced Fine-Tuning approach, i.e., \TheName{}, to enhance the reasoning performance of LLMs while addressing the aforementioned limitations. Specifically, we propose learning a representation for each CoT. Based on this representation, we design novel contrastive signals to guide the fine-tuning process. Our approach not only fully exploits the available annotated CoT but also stabilizes the fine-tuning procedure by incorporating an additional unsupervised learning signal. We conduct comprehensive experiments and in-depth analysis with three baseline approaches, two foundation models, and two datasets to demonstrate significant advantages of \TheName{} in terms of robustness, performance (up to 10.15\%), and efficiency (up to 30.62\%). Code is available at https://github.com/WNQzhu/CARFT.
- Abstract(参考訳): 推論能力は、LLM(Large Language Models)の幅広い応用において、非常に重要な役割を果たす。
LLMの推論性能を高めるため,様々な強化学習(RL)に基づく微調整手法が提案され,SFT(Supervised Fine-Tuning)のみで訓練されたLCMの限定的な一般化能力に対処している。
その効果にもかかわらず、2つの大きな制限がLLMの進歩を妨げた。
第一に、バニラRLベースのアプローチは注釈付きチェーン・オブ・ソート(CoT)を無視し、不安定な推論経路のサンプリングを取り入れている。
第2に、既存のSFTアプローチは一般的に注釈付きCoTを過度に強調し、潜在的なCoTの活用が不十分なため性能低下につながる可能性がある。
本稿では,注釈付きCoTをベースとしたReinforced Fine-Tuningアプローチ,すなわち \TheName{} を用いたコントラスト学習を提案し,上記の制限に対処しながらLCMの推論性能を向上させる。
具体的には,各CoTの表現を学習することを提案する。
この表現に基づいて、微調整プロセスのガイドとなる新しいコントラスト信号を設計する。
提案手法は、利用可能な注釈付きCoTを十分に活用するだけでなく、教師なし学習信号を付加することにより微調整手順を安定化する。
我々は、3つのベースラインアプローチ、2つの基礎モデル、2つのデータセットによる総合的な実験と詳細な分析を行い、堅牢性、性能(最大10.15\%)、効率(最大30.62\%)の観点から、 \TheName{}の顕著な利点を示す。
コードはhttps://github.com/WNQzhu/CARFTで入手できる。
関連論文リスト
- Compressing Chain-of-Thought in LLMs via Step Entropy [12.576398947428988]
Chain-of-Thought (CoT) を用いた大規模言語モデル (LLM) は複雑な推論において優れるが、かなりの冗長性を持つ思考プロセスを生成し、推論コストが増加し効率が低下する。
本稿では,ステップエントロピーに基づく新しいCoT圧縮フレームワークを提案する。これは,個々の推論ステップの情報的寄与を定量化し,冗長性を識別する指標である。
論文 参考訳(メタデータ) (2025-08-05T11:48:18Z) - Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
大規模言語モデル(LLM)は、最近、検証可能な報酬付き強化学習(RLVR)を通じて推論能力の顕著な進歩を示した。
本稿では,情報ボトルネック(IB)の原理に基づくLLM推論の理論的特徴について述べる。
IB対応推論最適化(IBRO)を提案する。
論文 参考訳(メタデータ) (2025-07-24T13:14:25Z) - Implicit Reward as the Bridge: A Unified View of SFT and DPO Connections [65.36449542323277]
本稿では,Large Language Model (LLM) 後の学習において,SFT(Supervised Fine-Tuning) と優先学習を統合した理論フレームワークを提案する。
そこで本研究では,学習率の簡易かつ効果的な削減手法を提案する。
論文 参考訳(メタデータ) (2025-06-15T05:42:29Z) - Reinforced Latent Reasoning for LLM-based Recommendation [83.18146814163308]
大きな言語モデル(LLM)は、複雑な問題解決タスクにおいて印象的な推論能力を示している。
既存の手法は通常、明示的なチェーン・オブ・シント(CoT)データによる微調整に依存している。
本研究では, 明示的なCoT推論から, コンパクトで情報密度の高い潜伏推論へ移行する代替手法について検討する。
論文 参考訳(メタデータ) (2025-05-25T11:03:45Z) - The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models [69.798277882245]
大規模言語モデルの推論効率を向上させるために,Unsupervised Prefix Fine-Tuning (UPFT)を導入した。
UPFTはラベル付きデータや徹底的なサンプリングの必要性を取り除く。
実験の結果,UPFTは教師付き手法の性能と一致していることがわかった。
論文 参考訳(メタデータ) (2025-03-04T18:56:03Z) - Understanding Chain-of-Thought in LLMs through Information Theory [16.78730663293352]
我々は,情報理論レンズを用いて,大規模言語モデル(LLM)におけるChain-of-Thought(CoT)推論を定式化する。
具体的には、各推論ステップにおける「情報ゲイン」を定量化し、障害モードの識別を可能にする。
我々は,おもちゃの算術, GSM8K, PRM800kデータセットに関する広範な実験を通じて,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-11-18T19:14:36Z) - Strategic Chain-of-Thought: Guiding Accurate Reasoning in LLMs through Strategy Elicitation [16.350747493026432]
CoT(Chain-of-Thought)パラダイムは,大規模言語モデル(LLM)の推論能力向上のための重要なアプローチとして登場した。
中間的推論ステップを生成する前に戦略的知識を統合することでLCM性能を向上するための textbfStrategic Chain-of-Thought (SCoT) を提案する。
SCoTは1つのプロンプトの中で2段階のアプローチを採用し、まず効果的な問題解決戦略を導き、次に高品質なCoTパスと最終回答の生成を導くのに使用される。
論文 参考訳(メタデータ) (2024-09-05T06:28:05Z) - Fine-Tuning on Diverse Reasoning Chains Drives Within-Inference CoT Refinement in LLMs [63.36637269634553]
本稿では,LLMを微調整し,一つの推論ステップで思考の逆連鎖(DCoT)を生成する手法を提案する。
DCoTの微調整により,モデルファミリおよびスケール間のCoTベースライン上での性能が向上することを示す。
我々の研究は、定量的解析と手動評価の両方で、観測された利益は、最初の推論連鎖を洗練させるモデルの能力に由来することを明らかにしているため、重要である。
論文 参考訳(メタデータ) (2024-07-03T15:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。