論文の概要: Degree of Staleness-Aware Data Updating in Federated Learning
- arxiv url: http://arxiv.org/abs/2508.16931v1
- Date: Sat, 23 Aug 2025 07:31:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.259179
- Title: Degree of Staleness-Aware Data Updating in Federated Learning
- Title(参考訳): フェデレーション学習における定常性を考慮したデータ更新の度合い
- Authors: Tao Liu, Xuehe Wang,
- Abstract要約: 我々は,データの不安定度を定量化するために,DoS(Degree of Staleness)と呼ばれる新しいメトリクスを導入する。
クローズド形式で各クライアントに対して最適なローカルデータ更新戦略を導出し、サーバに対してほぼ最適な戦略を導出する。
- 参考スコア(独自算出の注目度): 4.4786252278758605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Handling data staleness remains a significant challenge in federated learning with highly time-sensitive tasks, where data is generated continuously and data staleness largely affects model performance. Although recent works attempt to optimize data staleness by determining local data update frequency or client selection strategy, none of them explore taking both data staleness and data volume into consideration. In this paper, we propose DUFL(Data Updating in Federated Learning), an incentive mechanism featuring an innovative local data update scheme manipulated by three knobs: the server's payment, outdated data conservation rate, and clients' fresh data collection volume, to coordinate staleness and volume of local data for best utilities. To this end, we introduce a novel metric called DoS(the Degree of Staleness) to quantify data staleness and conduct a theoretic analysis illustrating the quantitative relationship between DoS and model performance. We model DUFL as a two-stage Stackelberg game with dynamic constraint, deriving the optimal local data update strategy for each client in closed-form and the approximately optimal strategy for the server. Experimental results on real-world datasets demonstrate the significant performance of our approach.
- Abstract(参考訳): データの不安定さは、データが連続的に生成され、データの不安定さがモデルのパフォーマンスに大きく影響する、高度に時間に敏感なタスクによるフェデレーション学習において、依然として重要な課題である。
最近の研究は、ローカルなデータ更新頻度やクライアントの選択戦略を決定することによって、データの安定性を最適化しようとしているが、データの安定性とデータボリュームを考慮に入れていない。
本稿では、サーバの支払い、古いデータ保存率、クライアントの新たなデータ収集量という3つのノブによって操作される革新的なローカルデータ更新スキームを特徴とするインセンティブ機構であるDUFL(Data Updating in Federated Learning)を提案する。
そこで本研究では,データ安定性の定量化と,DoSとモデル性能の定量的関係を考慮した理論解析を行う,DoS(The Degree of Staleness)と呼ばれる新しい計量法を提案する。
DUFLを動的制約付き2段階のStackelbergゲームとしてモデル化し、クライアント毎のローカルデータ更新戦略をクローズド形式で導出し、サーバ毎のほぼ最適戦略を導出する。
実世界のデータセットに対する実験結果は、我々のアプローチの顕著な性能を示している。
関連論文リスト
- A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
実世界のデータセットは、しばしば冗長でノイズの多いデータを含み、トレーニング効率とモデルパフォーマンスに悪影響を及ぼす。
データ選択は、データセット全体から最も代表的なサンプルを特定することを約束している。
より堅牢で一般化可能なサンプル選択にマルチモーダル情報を活用するCLIPを利用した新しいデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T03:00:58Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - The Best of Both Worlds: Accurate Global and Personalized Models through
Federated Learning with Data-Free Hyper-Knowledge Distillation [17.570719572024608]
FedHKD (Federated Hyper-Knowledge Distillation) は、クライアントがローカルモデルを訓練するために知識蒸留に依存する新しいFLアルゴリズムである。
他のKDベースのpFLメソッドとは異なり、FedHKDはパブリックデータセットに依存したり、サーバに生成モデルをデプロイしたりしない。
さまざまなシナリオにおける視覚的データセットに関する広範な実験を行い、FedHKDがパーソナライズおよびグローバルモデルパフォーマンスの両方において、大幅な改善を提供することを示した。
論文 参考訳(メタデータ) (2023-01-21T16:20:57Z) - DYNAFED: Tackling Client Data Heterogeneity with Global Dynamics [60.60173139258481]
非イド分散データに対する局所訓練は、偏向局所最適化をもたらす。
自然な解決策は、サーバがデータ分散全体のグローバルなビューを持つように、すべてのクライアントデータをサーバに収集することです。
本稿では,データプライバシを損なうことなく,サーバ上でのグローバルな知識の収集と活用を図る。
論文 参考訳(メタデータ) (2022-11-20T06:13:06Z) - Data Selection for Efficient Model Update in Federated Learning [0.07614628596146598]
本稿では,グローバルモデルのトレーニングに必要なローカルデータの量を削減することを提案する。
本手法では, 局所データの特徴により敏感な部分と, 一般特徴抽出のための下位部分と, 上位部分とにモデルを分割する。
実験の結果,クライアントデータの特徴をグローバルモデルに転送できる地域データは1%未満であることがわかった。
論文 参考訳(メタデータ) (2021-11-05T14:07:06Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。