論文の概要: LLM-based Agentic Reasoning Frameworks: A Survey from Methods to Scenarios
- arxiv url: http://arxiv.org/abs/2508.17692v1
- Date: Mon, 25 Aug 2025 06:01:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.65262
- Title: LLM-based Agentic Reasoning Frameworks: A Survey from Methods to Scenarios
- Title(参考訳): LLMに基づくエージェント推論フレームワーク:メソッドからシナリオへの調査
- Authors: Bingxi Zhao, Lin Geng Foo, Ping Hu, Christian Theobalt, Hossein Rahmani, Jun Liu,
- Abstract要約: エージェント推論フレームワークを分解し,これらのフレームワークがどのようにフレームワークレベルの推論を支配しているかを分析する。
具体的には,エージェント推論システムを単一エージェントメソッド,ツールベースメソッド,マルチエージェントメソッドに分類するための統一形式言語を提案する。
我々は、科学的発見、医療、ソフトウェア工学、社会シミュレーション、経済学における彼らの主要な応用シナリオを包括的にレビューする。
- 参考スコア(独自算出の注目度): 63.08653028889316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in the intrinsic reasoning capabilities of large language models (LLMs) have given rise to LLM-based agent systems that exhibit near-human performance on a variety of automated tasks. However, although these systems share similarities in terms of their use of LLMs, different reasoning frameworks of the agent system steer and organize the reasoning process in different ways. In this survey, we propose a systematic taxonomy that decomposes agentic reasoning frameworks and analyze how these frameworks dominate framework-level reasoning by comparing their applications across different scenarios. Specifically, we propose an unified formal language to further classify agentic reasoning systems into single-agent methods, tool-based methods, and multi-agent methods. After that, we provide a comprehensive review of their key application scenarios in scientific discovery, healthcare, software engineering, social simulation, and economics. We also analyze the characteristic features of each framework and summarize different evaluation strategies. Our survey aims to provide the research community with a panoramic view to facilitate understanding of the strengths, suitable scenarios, and evaluation practices of different agentic reasoning frameworks.
- Abstract(参考訳): 大規模言語モデル(LLM)の本質的推論能力の最近の進歩は、多種多様な自動化タスクにおいて、ほぼ人間に近い性能を示すLLMベースのエージェントシステムを生み出している。
しかしながら、これらのシステムはLLMの使用に関して類似性を持っているが、エージェントシステムステアの異なる推論フレームワークは、異なる方法で推論プロセスを組織化している。
本稿では,エージェント推論フレームワークを分解する系統分類法を提案し,それらのフレームワークがフレームワークレベルの推論をどのように支配しているかを,異なるシナリオでアプリケーションを比較して分析する。
具体的には,エージェント推論システムを単一エージェントメソッド,ツールベースメソッド,マルチエージェントメソッドに分類するための統一形式言語を提案する。
その後、科学発見、医療、ソフトウェア工学、社会シミュレーション、経済学における主要な応用シナリオについて、包括的なレビューを行います。
また、各フレームワークの特徴を分析し、異なる評価戦略を要約する。
本調査は, 各種エージェント推論フレームワークの強度, 適切なシナリオ, 評価実践の理解を容易にするために, パノラマ的な視点で研究コミュニティに提供することを目的としている。
関連論文リスト
- From Standalone LLMs to Integrated Intelligence: A Survey of Compound Al Systems [6.284317913684068]
複合アルシステム(CAIS)は、大規模な言語モデル(LLM)をレトリバー、エージェント、ツール、オーケストレータといった外部コンポーネントと統合する新興パラダイムである。
学術と産業の両方で採用が増加しているにもかかわらず、CAISの景観は断片化され、分析、分類、評価のための統一された枠組みが欠如している。
本調査は,次世代のシステムレベルの人工知能を理解し,開発し,推進するための総合的な基盤を研究者や実践者に提供することを目的とする。
論文 参考訳(メタデータ) (2025-06-05T02:34:43Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
推論(Reasoning)は、論理的推論、問題解決、意思決定を可能にする基本的な認知プロセスである。
大規模言語モデル(LLM)の急速な進歩により、推論は高度なAIシステムを区別する重要な能力として浮上した。
我々は,(1)推論が達成される段階を定義するレジーム,(2)推論プロセスに関与するコンポーネントを決定するアーキテクチャの2つの側面に沿って既存の手法を分類する。
論文 参考訳(メタデータ) (2025-04-12T01:27:49Z) - Evaluating LLM-based Agents for Multi-Turn Conversations: A Survey [64.08485471150486]
本研究では,大規模言語モデル(LLM)に基づくマルチターン対話環境におけるエージェントの評価手法について検討する。
我々は250近い学術資料を体系的にレビューし、様々な出版場所から芸術の状態を捉えた。
論文 参考訳(メタデータ) (2025-03-28T14:08:40Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - A Survey on LLM-powered Agents for Recommender Systems [16.463945811669245]
大規模言語モデル(LLM)を利用したエージェントは、自然言語の相互作用と解釈可能な推論を可能にすることによって、有望なアプローチを提供する。
この調査は、レコメンデータシステムにおけるLSMを利用したエージェントの新たな応用の体系的なレビューを提供する。
論文 参考訳(メタデータ) (2025-02-14T09:57:07Z) - How Strategic Agents Respond: Comparing Analytical Models with LLM-Generated Responses in Strategic Classification [9.296248945826084]
我々は,大規模言語モデルによって生成された戦略的アドバイスを用いて,戦略分類における人間のエージェント応答をシミュレートする。
我々は、雇用、ローン申請、学校入学、個人所得、公的支援プログラムの5つの重要なSCシナリオについて検討する。
次に、得られたエージェント応答と、既存の理論モデルによって生成された最良の応答を比較する。
論文 参考訳(メタデータ) (2025-01-20T01:39:03Z) - Surveying the MLLM Landscape: A Meta-Review of Current Surveys [17.372501468675303]
MLLM(Multimodal Large Language Models)は、人工知能分野における変革の原動力となっている。
本研究の目的は,MLLMのベンチマークテストと評価方法の体系的レビューを提供することである。
論文 参考訳(メタデータ) (2024-09-17T14:35:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。