論文の概要: Adaptive Ensemble Learning with Gaussian Copula for Load Forecasting
- arxiv url: http://arxiv.org/abs/2508.17700v1
- Date: Mon, 25 Aug 2025 06:17:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.657609
- Title: Adaptive Ensemble Learning with Gaussian Copula for Load Forecasting
- Title(参考訳): 負荷予測のためのガウスコピュラを用いた適応型アンサンブル学習
- Authors: Junying Yang, Gang Lu, Xiaoqing Yan, Peng Xia, Di Wu,
- Abstract要約: 本稿では,ガウスコピュラを用いた適応アンサンブル学習モデルを提案する。
実験により、我々のモデルは堅牢であることが示された。
- 参考スコア(独自算出の注目度): 6.349731665140543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) is capable of accurate Load Forecasting from complete data. However, there are many uncertainties that affect data collection, leading to sparsity. This article proposed a model called Adaptive Ensemble Learning with Gaussian Copula to deal with sparsity, which contains three modules: data complementation, ML construction, and adaptive ensemble. First, it applies Gaussian Copula to eliminate sparsity. Then, we utilise five ML models to make predictions individually. Finally, it employs adaptive ensemble to get final weighted-sum result. Experiments have demonstrated that our model are robust.
- Abstract(参考訳): 機械学習(ML)は、完全なデータから正確なロード予測を行うことができる。
しかし、データ収集に影響を及ぼす不確実性は数多くあり、スパーシリティに繋がる。
本稿では,データ補完,ML構築,適応アンサンブルという3つのモジュールを含む,ガウスコプラーを用いた適応アンサンブル学習モデルを提案する。
第一に、ガウシアン・コピュラ(Gaussian Copula)をスパシティの除去に応用する。
次に、5つのMLモデルを用いて個別に予測を行う。
最後に、最終的な重み付け結果を得るためにアダプティブアンサンブルを使用する。
実験により、我々のモデルは堅牢であることが示された。
関連論文リスト
- FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors [50.131271229165165]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
ユーザの行動、好み、デバイス特性の相違から生じるデータの異質性は、連合学習にとって重要な課題である。
本稿では,学習過程におけるクライアントベクトルに基づくアダプティブ重み付けを適応的に調整する手法であるAdaptive Weight Aggregation (FedAWA)を提案する。
論文 参考訳(メタデータ) (2025-03-20T04:49:40Z) - Rethinking End-to-End 2D to 3D Scene Segmentation in Gaussian Splatting [86.15347226865826]
We design an new end-to-end object-aware lifting approach, called Unified-Lift。
コントラスト損失を用いて学習したガウスレベルの機能を各ガウス点に拡張し、インスタンス情報をエンコードする。
LERF-Masked、Replica、Messy Roomsの3つのベンチマークで実験を行った。
論文 参考訳(メタデータ) (2025-03-18T08:42:23Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
我々はエンコーダとデコーダベースのモデルを単一のプレフィックスLMに統一する。
学習方法は,「フリーランチ」仮説の主張を考察する。
データ配信においては,混合分布と多言語学習がモデル性能に及ぼす影響について検討した。
論文 参考訳(メタデータ) (2023-05-03T17:55:25Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
最近のデータ規制要件に応えて、マシン・アンラーニング(MU)が重要なプロセスとして登場した。
本研究は,ウェイトプルーニングによるモデルスペーシフィケーションという,新しいモデルベース視点を紹介する。
理論と実践の両方において、モデルスパーシティは、近似アンラーナーのマルチ基準アンラーニング性能を高めることができることを示す。
論文 参考訳(メタデータ) (2023-04-11T02:12:02Z) - C$^{4}$Net: Contextual Compression and Complementary Combination Network
for Salient Object Detection [0.0]
機能結合は、乗算や加算のような他の組み合わせ方法よりもうまく機能することを示す。
また、共同特徴学習は、処理中の情報共有のため、より良い結果をもたらす。
論文 参考訳(メタデータ) (2021-10-22T16:14:10Z) - Machine learning models for prediction of droplet collision outcomes [8.223798883838331]
液滴衝突の結果を予測することは、広く研究されている現象である。
現在の物理学に基づく結果を予測するモデルは不十分である。
ML設定では、この問題は4つのクラスを持つ分類問題に直接変換される。
論文 参考訳(メタデータ) (2021-10-01T01:53:09Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。