論文の概要: AMELIA: A Family of Multi-task End-to-end Language Models for Argumentation
- arxiv url: http://arxiv.org/abs/2508.17926v1
- Date: Mon, 25 Aug 2025 11:51:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.758059
- Title: AMELIA: A Family of Multi-task End-to-end Language Models for Argumentation
- Title(参考訳): AMELIA: 論証のためのマルチタスクエンドツーエンド言語モデルのファミリー
- Authors: Henri Savigny, Bruno Yun,
- Abstract要約: 論証マイニングは、自然言語テキストから論証的構造とその関係を自動的に抽出することを目的としている。
本稿では,一つの大規模言語モデルを用いて1つないし複数の引数マイニングタスクを実行する方法について検討する。
- 参考スコア(独自算出の注目度): 0.8379286663107844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Argument mining is a subfield of argumentation that aims to automatically extract argumentative structures and their relations from natural language texts. This paper investigates how a single large language model can be leveraged to perform one or several argument mining tasks. Our contributions are two-fold. First, we construct a multi-task dataset by surveying and converting 19 well-known argument mining datasets from the literature into a unified format. Second, we explore various training strategies using Meta AI's Llama-3.1-8B-Instruct model: (1) fine-tuning on individual tasks, (2) fine-tuning jointly on multiple tasks, and (3) merging models fine-tuned separately on individual tasks. Our experiments show that task-specific fine-tuning significantly improves individual performance across all tasks. Moreover, multi-task fine-tuning maintains strong performance without degradation, suggesting effective transfer learning across related tasks. Finally, we demonstrate that model merging offers a viable compromise: it yields competitive performance while mitigating the computational costs associated with full multi-task fine-tuning.
- Abstract(参考訳): 引数マイニング(Argument mining)は、自然言語のテキストから議論構造とそれらの関係を自動的に抽出することを目的とした議論のサブフィールドである。
本稿では,一つの大規模言語モデルを用いて1つないし複数の引数マイニングタスクを実行する方法について検討する。
私たちの貢献は2倍です。
まず、文献からよく知られた19の引数マイニングデータセットを調査・変換して、マルチタスクデータセットを構築する。
第2に,Meta AIのLlama-3.1-8B-インストラクトモデルを用いて,(1)個別タスクの微調整,(2)複数のタスクを共同で微調整,(3)個別タスクを個別に微調整したマージモデルについて検討する。
実験の結果,タスク固有の微調整により,タスクごとの個々のパフォーマンスが著しく向上することがわかった。
さらに、マルチタスクファインチューニングは劣化することなく高い性能を維持し、関連するタスク間で効果的な伝達学習を提案できる。
最後に、モデルマージは、完全なマルチタスクの微調整に伴う計算コストを軽減しつつ、競争性能を損なうことを実証する。
関連論文リスト
- Single-Input Multi-Output Model Merging: Leveraging Foundation Models for Dense Multi-Task Learning [46.51245338355645]
モデルマージは、シングルタスクのチェックポイントをマルチタスクモデルにマージするための、柔軟で計算的に抽出可能なアプローチである。
本研究は,タスク固有デコーダの存在により,文献で研究されている単一入出力・複数出力モデルのマージ設定と定性的に異なることを示す。
SIMO設定に対する2つの単純かつ効率的な修正を提案し,統合後の特徴表現を再調整する。
論文 参考訳(メタデータ) (2025-04-15T15:10:46Z) - Multi-Task Learning for Front-End Text Processing in TTS [15.62497569424995]
テキストから音声のフロントエンドで一般的に解決される3つのタスクを共同で実行するためのマルチタスク学習(MTL)モデルを提案する。
我々のフレームワークは、共有表現を学習するトランクを持つ木のような構造を利用し、その後にタスク固有ヘッドを分離する。
論文 参考訳(メタデータ) (2024-01-12T02:13:21Z) - Multi-Task Learning Improves Performance In Deep Argument Mining Models [2.2312474084968024]
議論マイニングタスクは、議論マイニングのためのマルチタスクアプローチを実装することで、共通の意味と論理構造を共有していることを示す。
本研究は,テキストから議論的手法を抽出するための総合的アプローチを提案するとともに,課題が相似であることから,議論的マイニングにおいて重要である。
論文 参考訳(メタデータ) (2023-07-03T23:42:29Z) - Musketeer: Joint Training for Multi-task Vision Language Model with Task Explanation Prompts [75.75548749888029]
本稿では,全てのタスクに対してパラメータを共同で訓練し,複数の異種タスク間で完全に共有する視覚言語モデルを提案する。
単一のモデルで、Musteteerは単一のタスクでトレーニングされた強いベースラインに匹敵する結果を得る。
論文 参考訳(メタデータ) (2023-05-11T17:57:49Z) - Effective Cross-Task Transfer Learning for Explainable Natural Language
Inference with T5 [50.574918785575655]
2つのタスクのパフォーマンス向上という文脈において、逐次微調整とマルチタスク学習のモデルを比較した。
この結果から,2つのタスクのうち,第1のタスクにおいて逐次マルチタスク学習は良好に調整できるが,第2のタスクでは性能が低下し,過度な適合に苦しむことが明らかとなった。
論文 参考訳(メタデータ) (2022-10-31T13:26:08Z) - Coarse-to-Fine: Hierarchical Multi-task Learning for Natural Language
Understanding [51.31622274823167]
本稿では,各タスクの下位レベルを全タスクに共有し,中間レベルを異なるグループに分割し,上位レベルを各タスクに割り当てる,粗大なパラダイムを持つ階層型フレームワークを提案する。
これにより、すべてのタスクから基本言語特性を学習し、関連するタスクのパフォーマンスを高め、無関係なタスクから負の影響を減らすことができる。
論文 参考訳(メタデータ) (2022-08-19T02:46:20Z) - Diversity Over Size: On the Effect of Sample and Topic Sizes for Topic-Dependent Argument Mining Datasets [49.65208986436848]
本研究では,アーギュメント・マイニング・データセットの構成が,少数・ゼロショット設定における影響について検討する。
実験結果から, モデル性能の達成には微調整が必須であるが, 慎重に構成したトレーニングサンプルを用いることで, トレーニングサンプルサイズを最大90%まで下げることで, 最大性能の95%を達成できることがわかった。
論文 参考訳(メタデータ) (2022-05-23T17:14:32Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
我々は,共通バックボーンと独立タスク固有のヘッドで表される,密集予測タスクのためのマルチタスク環境を考える。
マルチタスク設定では,グローバルやローカルなど,さまざまな注意に基づくコンテキストを探索する。
タスクペアごとに利用可能なすべてのコンテキストのプールをサンプリングするAdaptive Task-Relational Contextモジュールを提案する。
論文 参考訳(メタデータ) (2021-04-28T16:45:56Z) - Modelling Latent Skills for Multitask Language Generation [15.126163032403811]
マルチタスク条件言語生成のための生成モデルを提案する。
我々の指導的仮説は、共通の潜在スキルの集合が、多くの異なる言語生成タスクの根底にあるというものである。
このタスク埋め込み空間を潜在変数列列列モデルにおける潜在変数としてインスタンス化する。
論文 参考訳(メタデータ) (2020-02-21T20:39:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。