論文の概要: Choice Outweighs Effort: Facilitating Complementary Knowledge Fusion in Federated Learning via Re-calibration and Merit-discrimination
- arxiv url: http://arxiv.org/abs/2508.17954v1
- Date: Mon, 25 Aug 2025 12:18:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.766524
- Title: Choice Outweighs Effort: Facilitating Complementary Knowledge Fusion in Federated Learning via Re-calibration and Merit-discrimination
- Title(参考訳): フェデレーション学習における補足的知識融合の実現 : 再校正とメリット差別を通して
- Authors: Ming Yang, Dongrun Li, Xin Wang, Xiaoyang Yu, Xiaoming Wu, Shibo He,
- Abstract要約: FedMateは二元最適化を実装する方法である。
サーバ側では,サンプルサイズ,現在のパラメータ,将来予測の総合的な統合により,集約重みを調整した動的グローバルプロトタイプを構築している。
クライアント側では,有益性に基づく識別訓練を実現するために補完的な分類融合を導入し,コストを考慮した特徴伝達をモデル性能と通信効率のバランスに取り入れる。
- 参考スコア(独自算出の注目度): 25.3144483276258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-client data heterogeneity in federated learning induces biases that impede unbiased consensus condensation and the complementary fusion of generalization- and personalization-oriented knowledge. While existing approaches mitigate heterogeneity through model decoupling and representation center loss, they often rely on static and restricted metrics to evaluate local knowledge and adopt global alignment too rigidly, leading to consensus distortion and diminished model adaptability. To address these limitations, we propose FedMate, a method that implements bilateral optimization: On the server side, we construct a dynamic global prototype, with aggregation weights calibrated by holistic integration of sample size, current parameters, and future prediction; a category-wise classifier is then fine-tuned using this prototype to preserve global consistency. On the client side, we introduce complementary classification fusion to enable merit-based discrimination training and incorporate cost-aware feature transmission to balance model performance and communication efficiency. Experiments on five datasets of varying complexity demonstrate that FedMate outperforms state-of-the-art methods in harmonizing generalization and adaptation. Additionally, semantic segmentation experiments on autonomous driving datasets validate the method's real-world scalability.
- Abstract(参考訳): 連合学習におけるクロスクライアントデータの異質性は、偏見のないコンセンサス凝縮と一般化とパーソナライズ指向の知識の相補的な融合を妨げるバイアスを誘導する。
既存のアプローチはモデルデカップリングと表現中心の損失を通じて不均一性を緩和するが、それらはしばしば局所的な知識を評価し、グローバルなアライメントを厳格に採用するために静的で制限されたメトリクスに依存し、コンセンサス歪みとモデルの適応性を低下させる。
サーバ側では、サンプルサイズ、現在のパラメータ、将来の予測の全体的統合によって調整された集約重みを持つ動的グローバルプロトタイプを構築し、このプロトタイプを用いてカテゴリワイド分類器を微調整し、グローバルな一貫性を維持する。
クライアント側では,有益性に基づく識別訓練を実現するために補完的な分類融合を導入し,コストを考慮した特徴伝達をモデル性能と通信効率のバランスに取り入れる。
様々な複雑さの5つのデータセットの実験により、FedMateは一般化と適応を調和させる最先端の手法より優れていることが示された。
さらに、自律運転データセットに関するセマンティックセグメンテーション実験は、メソッドの実際のスケーラビリティを検証する。
関連論文リスト
- FedSC: Federated Learning with Semantic-Aware Collaboration [12.366529890744822]
フェデレートラーニング(FL)は、プライバシ保護のためのデータを共有することなく、クライアント間で協調的にモデルをトレーニングすることを目的としている。
不均一なクライアント間でクライアント固有のクラス関連知識を収集するために,FedSC(Federated Learning with Semantic-Aware Collaboration)を提案する。
論文 参考訳(メタデータ) (2025-06-26T05:04:55Z) - Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
フェデレートラーニング(FL)は、プライバシを維持しながらモデルをトレーニングするための分散パラダイムとして登場した。
本稿では,新たなクラスタリングFL法であるFedGWC(Federated Gaussian Weighting Clustering)を提案する。
ベンチマークデータセットを用いた実験により,FedGWCはクラスタの品質と分類精度において,既存のFLアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-02-05T16:33:36Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
フェデレートラーニング(FL)は、様々なクライアントからローカルに最適化されたモデルと、統一されたグローバルモデルを組み合わせる。
FLは、性能劣化、収束の遅さ、グローバルモデルの堅牢性低下など、重大な課題に直面している。
これらの問題を効果的に解決するために、革新的なデュアルストラテジーアプローチを導入する。
論文 参考訳(メタデータ) (2024-12-05T18:42:29Z) - Client Contribution Normalization for Enhanced Federated Learning [4.726250115737579]
スマートフォンやラップトップを含むモバイルデバイスは、分散化された異種データを生成する。
フェデレートラーニング(FL)は、データ共有のない分散デバイス間でグローバルモデルの協調トレーニングを可能にすることで、有望な代替手段を提供する。
本稿では、FLにおけるデータ依存的不均一性に着目し、局所的に訓練されたモデルから抽出された平均潜在表現を活用する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-10T04:03:09Z) - Generalizable Heterogeneous Federated Cross-Correlation and Instance
Similarity Learning [60.058083574671834]
本稿では,新しいFCCL+,フェデレーション相関と非ターゲット蒸留との類似性学習を提案する。
不均一な問題に対しては、無関係な公開データを通信に活用する。
局所的な更新段階における破滅的な忘れ物として、FCCL+はFederated Non Target Distillationを導入している。
論文 参考訳(メタデータ) (2023-09-28T09:32:27Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Adaptive Federated Learning via New Entropy Approach [14.595709494370372]
Federated Learning (FL) は、分散機械学習フレームワークとして注目されている。
本稿では,不均一クライアント間のパラメータ偏差を軽減するために,entropy理論(FedEnt)に基づく適応型FEDerated Learningアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-27T07:57:04Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - Feature Correlation-guided Knowledge Transfer for Federated
Self-supervised Learning [19.505644178449046]
特徴相関に基づくアグリゲーション(FedFoA)を用いたフェデレーション型自己教師型学習法を提案する。
私たちの洞察は、機能相関を利用して、特徴マッピングを整列し、ローカルトレーニングプロセス中にクライアント間でローカルモデルの更新を校正することにあります。
我々はFedFoAがモデルに依存しないトレーニングフレームワークであることを証明する。
論文 参考訳(メタデータ) (2022-11-14T13:59:50Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。