論文の概要: Generative Feature Imputing - A Technique for Error-resilient Semantic Communication
- arxiv url: http://arxiv.org/abs/2508.17957v2
- Date: Tue, 26 Aug 2025 08:35:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 13:17:04.080803
- Title: Generative Feature Imputing - A Technique for Error-resilient Semantic Communication
- Title(参考訳): ジェネレーティブ・フィーチャー・インパチング - エラー-レジリエント・セマンティック・コミュニケーションのための技術
- Authors: Jianhao Huang, Qunsong Zeng, Hongyang Du, Kaibin Huang,
- Abstract要約: 本稿では,3つの鍵となる手法を取り入れた,生成的特徴インパッシング(generative feature imputing)という新しい枠組みを提案する。
まず,チャネルマッピングに基づいて特徴要素を符号化することで特徴歪みを空間的に集中する空間誤差集中パケット化手法を提案する。
第2に,パケット損失による欠落した特徴を効率的に再構築する拡散モデルを用いた生成的特徴量計算手法を提案する。
第3に,各パケットのセマンティックな重要性に応じて送信電力を割り当てることで,不等なエラー保護を可能にするセマンティック・アウェア・パワー・アロケーション・スキームを開発する。
- 参考スコア(独自算出の注目度): 46.46641562787869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic communication (SemCom) has emerged as a promising paradigm for achieving unprecedented communication efficiency in sixth-generation (6G) networks by leveraging artificial intelligence (AI) to extract and transmit the underlying meanings of source data. However, deploying SemCom over digital systems presents new challenges, particularly in ensuring robustness against transmission errors that may distort semantically critical content. To address this issue, this paper proposes a novel framework, termed generative feature imputing, which comprises three key techniques. First, we introduce a spatial error concentration packetization strategy that spatially concentrates feature distortions by encoding feature elements based on their channel mappings, a property crucial for both the effectiveness and reduced complexity of the subsequent techniques. Second, building on this strategy, we propose a generative feature imputing method that utilizes a diffusion model to efficiently reconstruct missing features caused by packet losses. Finally, we develop a semantic-aware power allocation scheme that enables unequal error protection by allocating transmission power according to the semantic importance of each packet. Experimental results demonstrate that the proposed framework outperforms conventional approaches, such as Deep Joint Source-Channel Coding (DJSCC) and JPEG2000, under block fading conditions, achieving higher semantic accuracy and lower Learned Perceptual Image Patch Similarity (LPIPS) scores.
- Abstract(参考訳): セマンティック・コミュニケーション(Semantic Communication, SemCom)は、人工知能(AI)を活用して、第6世代(6G)ネットワークにおける前例のないコミュニケーション効率を達成するための、有望なパラダイムとして登場した。
しかし、SemComをデジタルシステム上にデプロイすることは、特に意味論的に重要なコンテンツを歪ませる可能性のある送信エラーに対して堅牢性を確保するために、新しい課題を提示している。
そこで本研究では,3つの鍵となる手法を取り入れた,生成的特徴インパッシング(generative feature imputing)と呼ばれる新しいフレームワークを提案する。
まず,チャネルマッピングに基づいて特徴要素を符号化することで空間的歪みを集中する空間的誤差集中パケット化手法を提案する。
第2に,この戦略に基づいて,パケット損失による欠落した特徴を効率的に再構築する拡散モデルを用いた生成的特徴量計算手法を提案する。
最後に,各パケットのセマンティックな重要性に応じて送信電力を割り当てることで,不等なエラー保護を可能にするセマンティック・アウェア・パワー・アロケーション・スキームを開発した。
実験の結果,提案手法はブロックフェージング条件下でのDJSCC(Deep Joint Source-Channel Coding)やJPEG2000(JPEG2000)といった従来の手法よりも優れており,意味的精度が向上し,LPIPS(Learted Perceptual Image Patch similarity)スコアが低かった。
関連論文リスト
- Distributionally Robust Wireless Semantic Communication with Large AI Models [120.29419104482793]
6G無線システムは、超低レイテンシで大量のデータをサポートすることが期待されている。
従来のビットレベルの伝送戦略は、現代的なデータ集約型アプリケーションに必要な効率と適応性をサポートできない。
セマンティックコミュニケーション(SemCom)の概念は、生データの代わりにタスク関連セマンティック情報を伝達することに集中することで、この制限に対処する。
論文 参考訳(メタデータ) (2025-05-28T04:03:57Z) - Semantic Communication based on Generative AI: A New Approach to Image Compression and Edge Optimization [1.450405446885067]
この論文は、最適化された画像圧縮とエッジネットワークリソース割り当てのための意味コミュニケーションと生成モデルを統合する。
通信インフラは、帯域幅効率とレイテンシーの大幅な改善の恩恵を受けることができる。
その結果、生成AIとセマンティックコミュニケーションを組み合わせて、より効率的なセマンティックゴール指向のコミュニケーションネットワークを構築する可能性を実証した。
論文 参考訳(メタデータ) (2025-02-01T21:48:31Z) - Vision Transformer-based Semantic Communications With Importance-Aware Quantization [13.328970689723096]
本稿では、無線画像伝送のための重要量化(IAQ)を用いた視覚変換器(ViT)に基づくセマンティック通信システムを提案する。
筆者らのIAQフレームワークは, エラーのない, 現実的な通信シナリオにおいて, 従来の画像圧縮手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-12-08T19:24:47Z) - Latent Diffusion Model-Enabled Low-Latency Semantic Communication in the Presence of Semantic Ambiguities and Wireless Channel Noises [18.539501941328393]
本稿では,ソースデータのアウトレイラを処理するために,遅延拡散モデルを用いたSemComシステムを開発した。
軽量な単層遅延空間変換アダプタは、送信機でのワンショット学習を完了させる。
終端整合蒸留法を用いて, 潜時空間で訓練した拡散模型を蒸留する。
論文 参考訳(メタデータ) (2024-06-09T23:39:31Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - Generative AI-aided Joint Training-free Secure Semantic Communications
via Multi-modal Prompts [89.04751776308656]
本稿では,多モデルプロンプトを用いたGAI支援型SemComシステムを提案する。
セキュリティ上の懸念に応えて、フレンドリーなジャマーによって支援される隠蔽通信の応用を紹介する。
論文 参考訳(メタデータ) (2023-09-05T23:24:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。