論文の概要: Does simple trump complex? Comparing strategies for adversarial robustness in DNNs
- arxiv url: http://arxiv.org/abs/2508.18019v1
- Date: Mon, 25 Aug 2025 13:33:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.795069
- Title: Does simple trump complex? Comparing strategies for adversarial robustness in DNNs
- Title(参考訳): 単純な切り株は複雑か? : DNNの対向ロバスト性の比較戦略の比較
- Authors: William Brooks, Marelie H. Davel, Coenraad Mouton,
- Abstract要約: ディープニューラルネットワーク(DNN)は、様々なアプリケーションでかなりの成功を収めているが、敵の攻撃に弱いままである。
本研究は, 対人強靭性向上に寄与する2つの異なる対人訓練手法の構成要素を同定し, 分離することを目的とする。
- 参考スコア(独自算出の注目度): 3.6130723421895947
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks (DNNs) have shown substantial success in various applications but remain vulnerable to adversarial attacks. This study aims to identify and isolate the components of two different adversarial training techniques that contribute most to increased adversarial robustness, particularly through the lens of margins in the input space -- the minimal distance between data points and decision boundaries. Specifically, we compare two methods that maximize margins: a simple approach which modifies the loss function to increase an approximation of the margin, and a more complex state-of-the-art method (Dynamics-Aware Robust Training) which builds upon this approach. Using a VGG-16 model as our base, we systematically isolate and evaluate individual components from these methods to determine their relative impact on adversarial robustness. We assess the effect of each component on the model's performance under various adversarial attacks, including AutoAttack and Projected Gradient Descent (PGD). Our analysis on the CIFAR-10 dataset reveals which elements most effectively enhance adversarial robustness, providing insights for designing more robust DNNs.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、様々なアプリケーションでかなりの成功を収めているが、敵の攻撃に弱いままである。
本研究の目的は,データ点と決定境界の間の最小距離である入力空間の辺縁レンズを通じて,特に対向ロバスト性の向上に寄与する2つの異なる対向的トレーニング手法の構成要素を同定し,分離することである。
具体的には、マージンを最大化する2つの手法を比較し、損失関数を修飾してマージンの近似を増大させる単純な手法と、このアプローチに基づくより複雑な最先端の手法(Dynamics-Aware Robust Training)を比較する。
VGG-16モデルをベースとして,これらの手法から個々の成分を系統的に分離,評価し,その相対的影響が敵の強靭性に与える影響を判定する。
本稿では, AutoAttack や Projected Gradient Descent (PGD) など,様々な敵攻撃によるモデルの性能評価を行う。
CIFAR-10データセットを解析したところ、どの要素が最も効果的に敵のロバスト性を高め、よりロバストなDNNを設計するための洞察が得られた。
関連論文リスト
- Adversarial Training in Low-Label Regimes with Margin-Based Interpolation [8.585017175426023]
敵の攻撃に抵抗する堅牢なニューラルネットワークモデルをトレーニングするための効果的なアプローチとして、敵のトレーニングが登場した。
本稿では,頑健性と自然な精度を両立させる,新たな半教師付き対人訓練手法を提案する。
論文 参考訳(メタデータ) (2024-11-27T00:35:13Z) - Ensemble Adversarial Defense via Integration of Multiple Dispersed Low Curvature Models [7.8245455684263545]
本研究では,攻撃伝達性を低減し,アンサンブルの多様性を高めることを目的とする。
損失曲率を表す2階勾配を, 対向的強靭性の重要な要因として同定する。
本稿では,複数変数の低曲率ネットワークモデルをトレーニングするための新しい正規化器を提案する。
論文 参考訳(メタデータ) (2024-03-25T03:44:36Z) - Preference Poisoning Attacks on Reward Model Learning [47.00395978031771]
ペア比較による報酬モデル学習における脆弱性の性質と範囲について検討する。
本稿では,これらの攻撃に対するアルゴリズム的アプローチのクラスとして,勾配に基づくフレームワークと,ランク・バイ・ディスタンス手法のいくつかのバリエーションを提案する。
最高の攻撃は多くの場合、非常に成功しており、最も極端な場合、100%の成功率を達成することができ、データのわずか0.3%が毒殺されている。
論文 参考訳(メタデータ) (2024-02-02T21:45:24Z) - PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant
Semantic Segmentation [50.556961575275345]
対向シーンにおけるセグメンテーションの堅牢性を促進するための認識認識型融合フレームワークを提案する。
我々は,先進の競争相手に比べて15.3% mIOUの利得で,ロバスト性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-08-08T01:55:44Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
本稿では,2重のインスタンス再重み付き対向フレームワークを提案する。
KL偏差正規化損失関数の最適化により重みを求める。
提案手法は, 平均ロバスト性能において, 最先端のベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-01T06:16:18Z) - A Comprehensive Study on Robustness of Image Classification Models:
Benchmarking and Rethinking [54.89987482509155]
ディープニューラルネットワークのロバスト性は、通常、敵の例、共通の腐敗、分散シフトに欠けている。
画像分類タスクにおいてtextbfARES-Bench と呼ばれる総合的なベンチマークロバスト性を確立する。
それに応じてトレーニング設定を設計することにより、新しい最先端の対人ロバスト性を実現する。
論文 参考訳(メタデータ) (2023-02-28T04:26:20Z) - Differentiable Search of Accurate and Robust Architectures [22.435774101990752]
敵の訓練は 単純さと有効性から 注目を集めています
ディープニューラルネットワーク(DNN)は敵の攻撃に対して脆弱である。
本稿では,敵の訓練後に正確で堅牢なニューラルネットワークを自動検索するDSARAを提案する。
論文 参考訳(メタデータ) (2022-12-28T08:36:36Z) - Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks [78.2700757742992]
Projected Gradient Descent (PGD) は、そのような敵を生成するための最も効果的で概念的にシンプルなアルゴリズムの1つである。
この主張を合成データの例で実験的に検証し、提案手法を25の$ell_infty$-robustモデルと3つのデータセットで評価した。
私たちの最強の敵攻撃は、AutoAttackアンサンブルのすべてのホワイトボックスコンポーネントより優れています。
論文 参考訳(メタデータ) (2022-12-15T17:44:31Z) - Causal Information Bottleneck Boosts Adversarial Robustness of Deep
Neural Network [3.819052032134146]
情報ボトルネック (IB) 法は, 深層学習における敵対的攻撃に対する有効な防御方法である。
因果推論をIBフレームワークに組み込んで、そのような問題を緩和する。
本手法は,複数の敵攻撃に対してかなりの堅牢性を示す。
論文 参考訳(メタデータ) (2022-10-25T12:49:36Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
深層学習システムは、人間の目には認識できないが、モデルが誤分類される可能性がある、人工的な敵の例に弱い。
我々は,オリジナルモデルに対する多様な決定境界を持つディフェンダーモデルを構築するための,アンサンブルに基づく新しいソリューションを開発した。
我々は、MNIST、CIFAR-10、CIFAR-100といった標準画像分類データセットを用いて、最先端の敵攻撃に対する広範な実験を行った。
論文 参考訳(メタデータ) (2022-08-18T08:19:26Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。