論文の概要: DualSparse-MoE: Coordinating Tensor/Neuron-Level Sparsity with Expert Partition and Reconstruction
- arxiv url: http://arxiv.org/abs/2508.18376v1
- Date: Mon, 25 Aug 2025 18:08:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 17:42:38.541904
- Title: DualSparse-MoE: Coordinating Tensor/Neuron-Level Sparsity with Expert Partition and Reconstruction
- Title(参考訳): DualSparse-MoE:専門的分割と再構成を伴うテンソル/神経レベル疎結合
- Authors: Weilin Cai, Le Qin, Shwai He, Junwei Cui, Ang Li, Jiayi Huang,
- Abstract要約: Mixture of Experts (MoE) はLarge Language Models (LLM) の主流アーキテクチャとなった。
トレーニング済みMoEモジュールにおけるテンソルとニューロンの二重間隔を精度と効率の両立の鍵因子として同定した。
本稿では,動的テンソルレベル低下と静的ニューロンレベル再構成を統合する推論システムであるDualSparse-MoEを提案する。
- 参考スコア(独自算出の注目度): 15.261077484922616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixture of Experts (MoE) has become a mainstream architecture for building Large Language Models (LLMs) by reducing per-token computation while enabling model scaling. It can be viewed as partitioning a large Feed-Forward Network (FFN) at the tensor level into fine-grained sub-FFNs, or experts, and activating only a sparse subset for each input. While this sparsity improves efficiency, MoE still faces substantial challenges due to their massive computational scale and unpredictable activation patterns. To enable efficient MoE deployment, we identify dual sparsity at the tensor and neuron levels in pre-trained MoE modules as a key factor for both accuracy and efficiency. Unlike prior work that increases tensor-level sparsity through finer-grained expert design during pre-training, we introduce post-training expert partitioning to induce such sparsity without retraining. This preserves the mathematical consistency of model transformations and enhances both efficiency and accuracy in subsequent fine-tuning and inference. Building upon this, we propose DualSparse-MoE, an inference system that integrates dynamic tensor-level computation dropping with static neuron-level reconstruction to deliver significant efficiency gains with minimal accuracy loss. Experimental results show that enforcing an approximate 25% drop rate with our approach reduces average accuracy by only 0.08%-0.28% across three prevailing MoE models, while nearly all degrees of computation dropping consistently yield proportional computational speedups. Furthermore, incorporating load-imbalance awareness into expert parallelism achieves a 1.41x MoE module speedup with just 0.5% average accuracy degradation.
- Abstract(参考訳): Mixture of Experts (MoE) は,大規模言語モデル (LLM) を構築する上で,モデルスケーリングを実現するとともに,トーケン単位の計算量を削減し,主要なアーキテクチャとなっている。
テンソルレベルで大きなFeed-Forward Network(FFN)をきめ細かなサブFFNまたはエキスパートに分割し、各入力に対してスパースサブセットのみを活性化すると見なすことができる。
この分散性は効率を向上するが、MoEは巨大な計算スケールと予測不可能なアクティベーションパターンのために依然として大きな課題に直面している。
効率的なMoE展開を実現するため,事前学習したMoEモジュールのテンソルとニューロンの2重間隔を精度と効率の両立要因として同定した。
事前訓練中によりきめ細かい専門家設計によってテンソルレベルの疎さを増大させる以前の作業とは異なり、トレーニング後のエキスパート分割を導入し、再訓練せずにそのような疎さを誘発する。
これにより、モデル変換の数学的一貫性が保たれ、その後の微調整と推論の効率性と精度が向上する。
そこで我々はDualSparse-MoEを提案する。DualSparse-MoEは、動的テンソルレベルの計算低下を静的ニューロンレベルの再構成と統合し、精度の低下を最小限に抑えるための推論システムである。
実験の結果,提案手法により約25%のドロップレートを適用すれば,3つのMoEモデルにおいて平均精度が0.08%~0.28%低下する一方,ほぼ全ての計算次数が一貫した比例的な計算速度が低下することがわかった。
さらに、負荷不均衡の認識を専門家の並列性に組み込むことで、1.41倍のMoEモジュールの高速化を実現し、平均精度はわずか 0.5% である。
関連論文リスト
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - HALO: Hadamard-Assisted Lower-Precision Optimization for LLMs [45.37278584462772]
本稿では,トランスフォーマーのための新しい量子化学習手法HALOを提案する。
提案手法により, 前方・後方パスにおける行列乗算の精度が低くなることが保証される。
LLAMAファミリーモデルに適用すると、HALOは様々なタスクの微調整中にほぼ完全精度に等しい結果が得られる。
論文 参考訳(メタデータ) (2025-01-05T18:41:54Z) - TensorGRaD: Tensor Gradient Robust Decomposition for Memory-Efficient Neural Operator Training [91.8932638236073]
textbfTensorGRaDは,重み付けに伴うメモリ問題に直接対処する新しい手法である。
SparseGRaD は総メモリ使用量を 50% 以上削減し,同時に精度も向上することを示した。
論文 参考訳(メタデータ) (2025-01-04T20:51:51Z) - Learning Mixtures of Experts with EM: A Mirror Descent Perspective [28.48469221248906]
古典的なMixtures of Experts(MoE)は、入力空間を含む機械学習モデルであり、各パーティションでトレーニングされた個別の"エキスパート"モデルである。
我々は,MoEモデルのトレーニングにおける期待最大化(EM)アルゴリズムの理論的保証について検討する。
論文 参考訳(メタデータ) (2024-11-09T03:44:09Z) - SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts [49.01990048827639]
本稿では,事前学習したMoEモデルのメモリフットプリントと計算要求の両方を削減するためのフレームワークSEER-MoEを紹介する。
第1段階では、ヘビーヒッターズカウントガイダンスを使用して専門家の総数を計算し、第2段階では、正則化に基づく微調整戦略を使用して精度の低下を回復する。
実験により,提案手法の有効性を実証し,精度のトレードオフを最小限に抑えた推論効率に最適化したMoEsモデルを試作した。
論文 参考訳(メタデータ) (2024-04-07T22:13:43Z) - LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient Inference in Large-Scale Generative Language Models [9.727062803700264]
量子化行列乗算のための効率的なカーネルであるLUT-GEMMを紹介する。
LUT-GEMMは資源集約化プロセスを取り除き、計算コストを削減する。
我々は,3ビット量子化を用いたOPT-175Bモデルに適用した場合,LUT-GEMMはトークン生成遅延を大幅に高速化することを示した。
論文 参考訳(メタデータ) (2022-06-20T03:48:17Z) - A Fast and Efficient Conditional Learning for Tunable Trade-Off between
Accuracy and Robustness [11.35810118757863]
クリーンかつ逆摂動画像上でのSOTA(State-of-the-art)性能を実現する既存のモデルは、FiLM(Feature-wise linear modulation)層を条件とした畳み込み操作に依存している。
既存のFiLMベースの条件付けの代わりに、付加層を必要としない独特な重み付き学習を行うFLOATアルゴリズムを提案する。
特に、重みテンソルにスケールドノイズを加え、クリーンな性能と対向的な性能のトレードオフを可能にする。
論文 参考訳(メタデータ) (2022-03-28T19:25:36Z) - Parameter-Efficient Mixture-of-Experts Architecture for Pre-trained
Language Models [68.9288651177564]
量子多体物理学から行列積演算子(MPO)に基づく新しいMoEアーキテクチャを提案する。
分解されたMPO構造により、元のMoEアーキテクチャのパラメータを減らすことができる。
GPT2に基づく3つの有名な下流自然言語データセットの実験は、モデルキャパシティの向上における性能と効率の向上を示している。
論文 参考訳(メタデータ) (2022-03-02T13:44:49Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z) - Activation Density based Mixed-Precision Quantization for Energy
Efficient Neural Networks [2.666640112616559]
ニューラルネットワークモデルのイントレーニング量子化手法を提案する。
本手法は,混合精度モデルの学習中に各層に対するビット幅を計算する。
VGG19/ResNet18アーキテクチャ上で、CIFAR-10、CIFAR-100、TinyImagenetなどのベンチマークデータセットの実験を行います。
論文 参考訳(メタデータ) (2021-01-12T09:01:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。