論文の概要: DoGFlow: Self-Supervised LiDAR Scene Flow via Cross-Modal Doppler Guidance
- arxiv url: http://arxiv.org/abs/2508.18506v1
- Date: Mon, 25 Aug 2025 21:26:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 17:42:38.600206
- Title: DoGFlow: Self-Supervised LiDAR Scene Flow via Cross-Modal Doppler Guidance
- Title(参考訳): DoGFlow:クロスモーダルドップラー誘導によるLiDARシーンフロー
- Authors: Ajinkya Khoche, Qingwen Zhang, Yixi Cai, Sina Sharif Mansouri, Patric Jensfelt,
- Abstract要約: DoGFlowは、LiDARシーンフロー推定のための完全な3Dオブジェクトモーションを復元する、新しい自己教師型フレームワークである。
挑戦的なMAN TruckScenesデータセットでは、DoGFlowが既存の自己管理メソッドを大幅に上回っている。
- 参考スコア(独自算出の注目度): 6.466382672755418
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate 3D scene flow estimation is critical for autonomous systems to navigate dynamic environments safely, but creating the necessary large-scale, manually annotated datasets remains a significant bottleneck for developing robust perception models. Current self-supervised methods struggle to match the performance of fully supervised approaches, especially in challenging long-range and adverse weather scenarios, while supervised methods are not scalable due to their reliance on expensive human labeling. We introduce DoGFlow, a novel self-supervised framework that recovers full 3D object motions for LiDAR scene flow estimation without requiring any manual ground truth annotations. This paper presents our cross-modal label transfer approach, where DoGFlow computes motion pseudo-labels in real-time directly from 4D radar Doppler measurements and transfers them to the LiDAR domain using dynamic-aware association and ambiguity-resolved propagation. On the challenging MAN TruckScenes dataset, DoGFlow substantially outperforms existing self-supervised methods and improves label efficiency by enabling LiDAR backbones to achieve over 90% of fully supervised performance with only 10% of the ground truth data. For more details, please visit https://ajinkyakhoche.github.io/DogFlow/
- Abstract(参考訳): 自律システムにとって正確な3Dシーンフロー推定は、動的環境を安全にナビゲートする上で重要であるが、大規模な手動注釈付きデータセットを作成することは、堅牢な知覚モデルを開発する上で重要なボトルネックである。
現在の自己監督手法は、特に長距離および悪天候のシナリオに挑戦する上で、完全に監督されたアプローチのパフォーマンスに匹敵する。
我々は,LDARシーンフロー推定のために,手動の真理アノテーションを必要とせずに完全な3Dオブジェクトの動きを復元する,新しい自己教師型フレームワークであるDoGFlowを紹介した。
本稿では,DGFlowが4次元レーダドップラー計測から直接リアルタイムに擬似ラベルを計算し,動的アウェアアソシエーションとあいまいさ解決の伝搬を用いてLiDARドメインに転送する手法を提案する。
挑戦的なMAN TruckScenesデータセットでは、DGFlowは既存の自己教師付きメソッドを大幅に上回り、LDARバックボーンが、地上の真理データのうちわずか10%で、完全な教師付きパフォーマンスの90%以上を達成できるようにすることで、ラベル効率を向上させる。
詳しくはhttps://ajinkyakhoche.github.io/DogFlow/をご覧ください。
関連論文リスト
- Learning to Track Any Points from Human Motion [55.831218129679144]
点追跡のための擬似ラベル付きトレーニングデータを生成する自動パイプラインを提案する。
AnthroTAPでトレーニングされた点追跡モデルは、TAP-Vidベンチマークで注釈付き最先端性能を達成する。
論文 参考訳(メタデータ) (2025-07-08T17:59:58Z) - SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining [62.433137130087445]
SuperFlow++は、連続するカメラペアを使用して事前トレーニングと下流タスクを統合する新しいフレームワークである。
SuperFlow++は様々なタスクや運転条件で最先端のメソッドよりも優れています。
強力な一般化性と計算効率により、SuperFlow++は、自動運転におけるデータ効率の高いLiDARベースの認識のための新しいベンチマークを確立する。
論文 参考訳(メタデータ) (2025-03-25T17:59:57Z) - SeFlow: A Self-Supervised Scene Flow Method in Autonomous Driving [18.88208422580103]
連続したLiDARスキャンで各点における3次元運動を予測する。
現在の最先端の手法は、シーンフローネットワークをトレーニングするために注釈付きデータを必要とする。
本研究では,効率的な動的分類を学習に基づくシーンフローパイプラインに統合するSeFlowを提案する。
論文 参考訳(メタデータ) (2024-07-01T18:22:54Z) - 3DSFLabelling: Boosting 3D Scene Flow Estimation by Pseudo
Auto-labelling [21.726386822643995]
本稿では,現実のLiDAR点雲に対して,多数の3次元シーンフロー擬似ラベルを生成するための新しい手法を提案する。
具体的には、自律走行シナリオにおける物体レベルの剛体運動をシミュレートするために、剛体運動の仮定を用いる。
拡張運動パラメータに基づいてターゲット点雲を完全合成することにより,実シナリオと高度に整合した点雲内に多数の3次元シーンフローラベルを容易に取得できる。
論文 参考訳(メタデータ) (2024-02-28T08:12:31Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - ZeroFlow: Scalable Scene Flow via Distillation [66.70820145266029]
シーンフロー推定は、時間的に連続する点雲間の3次元運動場を記述するタスクである。
State-of-the-artメソッドは、強い事前とテスト時の最適化技術を使用するが、フルサイズの点雲を処理するには数秒の順序を必要とする。
本研究では,ラベルなし最適化手法を用いて擬似ラベルを生成し,フィードフォワードモデルを監督する簡易でスケーラブルな蒸留フレームワークであるScene Flow via Distillationを提案する。
論文 参考訳(メタデータ) (2023-05-17T17:56:59Z) - An Effective Motion-Centric Paradigm for 3D Single Object Tracking in
Point Clouds [50.19288542498838]
LiDARポイントクラウド(LiDAR SOT)における3Dシングルオブジェクトトラッキングは、自動運転において重要な役割を果たす。
現在のアプローチはすべて、外観マッチングに基づくシームズパラダイムに従っている。
我々は新たな視点からLiDAR SOTを扱うための動き中心のパラダイムを導入する。
論文 参考訳(メタデータ) (2023-03-21T17:28:44Z) - FAST3D: Flow-Aware Self-Training for 3D Object Detectors [12.511087244102036]
最先端の自己学習アプローチは、主に自律運転データの時間的性質を無視している。
連続したLiDAR点雲上の3次元物体検出器の教師なし領域適応を可能にするフロー認識型自己学習法を提案する。
以上の結果から,先進的なドメイン知識がなければ,最先端技術よりも大幅に向上することが示唆された。
論文 参考訳(メタデータ) (2021-10-18T14:32:05Z) - Weakly Supervised Learning of Rigid 3D Scene Flow [81.37165332656612]
本研究では,剛体体として動くエージェント群によって説明できる3次元シーンを多用したデータ駆動シーンフロー推定アルゴリズムを提案する。
4種類の自律運転データセットにおいて,提案手法の有効性と一般化能力を示す。
論文 参考訳(メタデータ) (2021-02-17T18:58:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。