論文の概要: Robust and Label-Efficient Deep Waste Detection
- arxiv url: http://arxiv.org/abs/2508.18799v2
- Date: Mon, 08 Sep 2025 10:07:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:03.31313
- Title: Robust and Label-Efficient Deep Waste Detection
- Title(参考訳): ロバスト・ラベル効率のよい深層廃棄物検出
- Authors: Hassan Abid, Khan Muhammad, Muhammad Haris Khan,
- Abstract要約: 効率的な廃棄物のソートは持続可能なリサイクルには不可欠だが、この領域でのAI研究は商用システムに遅れを取っている。
本研究では,強力なベースラインを確立し,アンサンブルに基づく半教師付き学習フレームワークを導入することにより,AI駆動型廃棄物検出を推し進める。
- 参考スコア(独自算出の注目度): 29.019461511410515
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective waste sorting is critical for sustainable recycling, yet AI research in this domain continues to lag behind commercial systems due to limited datasets and reliance on legacy object detectors. In this work, we advance AI-driven waste detection by establishing strong baselines and introducing an ensemble-based semi-supervised learning framework. We first benchmark state-of-the-art Open-Vocabulary Object Detection (OVOD) models on the real-world ZeroWaste dataset, demonstrating that while class-only prompts perform poorly, LLM-optimized prompts significantly enhance zero-shot accuracy. Next, to address domain-specific limitations, we fine-tune modern transformer-based detectors, achieving a new baseline of 51.6 mAP. We then propose a soft pseudo-labeling strategy that fuses ensemble predictions using spatial and consensus-aware weighting, enabling robust semi-supervised training. Applied to the unlabeled ZeroWaste-s subset, our pseudo-annotations achieve performance gains that surpass fully supervised training, underscoring the effectiveness of scalable annotation pipelines. Our work contributes to the research community by establishing rigorous baselines, introducing a robust ensemble-based pseudo-labeling pipeline, generating high-quality annotations for the unlabeled ZeroWaste-s subset, and systematically evaluating OVOD models under real-world waste sorting conditions. Our code is available at: https://github.com/h-abid97/robust-waste-detection.
- Abstract(参考訳): 効率的な廃棄物のソートは持続可能なリサイクルには不可欠だが、この領域でのAI研究は、限られたデータセットとレガシーオブジェクト検出への依存のため、商用システムに遅れを取っている。
本研究では,強力なベースラインを確立し,アンサンブルに基づく半教師付き学習フレームワークを導入することにより,AI駆動型廃棄物検出を推し進める。
我々は、実世界のZeroWasteデータセット上で、最先端のOpen-Vocabulary Object Detection (OVOD)モデルをベンチマークし、クラスのみのプロンプトが貧弱であるのに対して、LLM最適化プロンプトはゼロショット精度を大幅に向上させることを示した。
次に、ドメイン固有の制限に対処するため、現代変圧器ベースの検出器を微調整し、新しいベースラインを51.6 mAPで達成した。
次に,空間的およびコンセンサスを考慮した重み付けによるアンサンブル予測を融合させ,堅牢な半教師付きトレーニングを実現するソフトな擬似ラベル方式を提案する。
非ラベルのZeroWaste-sサブセットに適用すると、当社の擬似アノテーションは、完全に教師付きトレーニングを超えるパフォーマンス向上を実現し、スケーラブルなアノテーションパイプラインの有効性を裏付けます。
我々の研究は、厳密なベースラインを確立し、堅牢なアンサンブルベースの擬似ラベルパイプラインを導入し、ラベルのないZeroWaste-sサブセットの高品質アノテーションを生成し、現実世界の廃棄物処理条件下でのOVODモデルを体系的に評価することで、研究コミュニティに貢献する。
私たちのコードは、https://github.com/h-abid97/robust-waste-detectionで利用可能です。
関連論文リスト
- CountingDINO: A Training-free Pipeline for Class-Agnostic Counting using Unsupervised Backbones [7.717986156838291]
CAC(Class-Agnostic counting)は、事前に定義されたカテゴリに制限されることなく、画像内のオブジェクト数を推定することを目的としている。
現在のCAC法はトレーニングのためにラベル付きデータに大きく依存している。
初となるCACフレームワークであるCountingDINOを紹介する。
論文 参考訳(メタデータ) (2025-04-23T09:48:08Z) - WasteGAN: Data Augmentation for Robotic Waste Sorting through Generative Adversarial Networks [7.775894876221921]
ムダGANと呼ばれる新しいGANアーキテクチャに基づくデータ拡張手法を提案する。
提案手法は,ラベル付きサンプルのごく限られたセットから,セマンティックセグメンテーションモデルの性能を向上させることができる。
次に、ムダGAN合成データに基づいて訓練されたモデルから予測される高品質なセグメンテーションマスクを活用し、セグメンテーション・アウェア・グルーピング・ポーズを計算する。
論文 参考訳(メタデータ) (2024-09-25T15:04:21Z) - ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
前回の研究であるRefTeacherは、疑似自信と注意に基づく監督を提供するために教師学生の枠組みを採用することで、この課題に取り組むための最初の試みである。
このアプローチは、Transformerベースのパイプラインに従う現在の最先端のビジュアルグラウンドモデルと互換性がない。
本稿では, ACTRESS を略したセミスーパービジョン視覚グラウンドのためのアクティブ・リトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-07-03T16:33:31Z) - HUWSOD: Holistic Self-training for Unified Weakly Supervised Object Detection [66.42229859018775]
我々は,HUWSOD(HuWSOD)と呼ばれる,統一・高容量弱教師付きオブジェクト検出(WSOD)ネットワークを導入する。
HUWSODには、自己管理された提案生成器と、従来のオブジェクト提案を置き換えるために、マルチレートで再構成されたピラミッドを備えたオートエンコーダ提案生成器が組み込まれている。
提案手法は,よく設計されたオフラインオブジェクト提案と大きく異なるが,WSOD訓練には有効であることを示す。
論文 参考訳(メタデータ) (2024-06-27T17:59:49Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Revisiting Class Imbalance for End-to-end Semi-Supervised Object
Detection [1.6249267147413524]
半教師付きオブジェクト検出(SSOD)は、擬似ラベルに基づくエンドツーエンド手法の開発において大きな進歩を遂げている。
多くの手法は、擬似ラベルジェネレータの有効性を妨げるクラス不均衡のため、課題に直面している。
本稿では,低品質な擬似ラベルの根本原因と,ラベル生成品質を改善するための新しい学習メカニズムについて検討する。
論文 参考訳(メタデータ) (2023-06-04T06:01:53Z) - Dense Learning based Semi-Supervised Object Detection [46.885301243656045]
半教師付きオブジェクト検出(SSOD)は、大量のラベルのないデータの助けを借りて、オブジェクト検出器の訓練と展開を容易にすることを目的としている。
本稿では,DenSe Learningに基づくアンカーフリーSSODアルゴリズムを提案する。
実験はMS-COCOとPASCAL-VOCで行われ,提案手法は新たな最先端SSOD性能を記録する。
論文 参考訳(メタデータ) (2022-04-15T02:31:02Z) - Unsupervised Domain Adaptive Salient Object Detection Through
Uncertainty-Aware Pseudo-Label Learning [104.00026716576546]
そこで本研究では,手動のアノテーションを使わずに,自然に高いピクセルラベル品質を有する合成・クリーンなラベルから,サリエンスを学習することを提案する。
提案手法は,複数のベンチマークデータセット上で,既存の最先端の深層教師なしSOD法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-02-26T16:03:55Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
弱機能および半教師付きオブジェクト検出フレームワーク(WSSOD)を提案する。
エージェント検出器は、まず関節データセット上でトレーニングされ、弱注釈画像上で擬似境界ボックスを予測するために使用される。
提案フレームワークはPASCAL-VOC と MSCOCO のベンチマークで顕著な性能を示し,完全教師付き環境で得られたものと同等の性能を達成している。
論文 参考訳(メタデータ) (2021-05-21T11:58:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。