論文の概要: Enhancing Model Privacy in Federated Learning with Random Masking and Quantization
- arxiv url: http://arxiv.org/abs/2508.18911v2
- Date: Wed, 27 Aug 2025 04:14:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-28 12:43:57.509825
- Title: Enhancing Model Privacy in Federated Learning with Random Masking and Quantization
- Title(参考訳): ランダムマスキングと量子化によるフェデレーション学習におけるモデルのプライバシ向上
- Authors: Zhibo Xu, Jianhao Zhu, Jingwen Xu, Changze Lv, Zisu Huang, Xiaohua Wang, Muling Wu, Qi Qian, Xiaoqing Zheng, Xuanjing Huang,
- Abstract要約: 大規模言語モデル(LLM)の台頭は、分散システムに新たな課題をもたらした。
これは、センシティブなデータとプロプライエタリなモデルの両方を保護可能な、フェデレーション付き学習アプローチの必要性を強調している。
モデルパラメータのサブネットワークを隠蔽するためにランダムマスキングを利用するフェデレート学習手法であるFedQSNを提案する。
- 参考スコア(独自算出の注目度): 46.915409150222494
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The primary goal of traditional federated learning is to protect data privacy by enabling distributed edge devices to collaboratively train a shared global model while keeping raw data decentralized at local clients. The rise of large language models (LLMs) has introduced new challenges in distributed systems, as their substantial computational requirements and the need for specialized expertise raise critical concerns about protecting intellectual property (IP). This highlights the need for a federated learning approach that can safeguard both sensitive data and proprietary models. To tackle this challenge, we propose FedQSN, a federated learning approach that leverages random masking to obscure a subnetwork of model parameters and applies quantization to the remaining parameters. Consequently, the server transmits only a privacy-preserving proxy of the global model to clients during each communication round, thus enhancing the model's confidentiality. Experimental results across various models and tasks demonstrate that our approach not only maintains strong model performance in federated learning settings but also achieves enhanced protection of model parameters compared to baseline methods.
- Abstract(参考訳): 従来のフェデレーション学習の第一の目的は、分散エッジデバイスが、ローカルクライアントで生データを分散化しながら、共有グローバルモデルを共同でトレーニングできるようにすることで、データのプライバシを保護することである。
大規模言語モデル(LLM)の台頭は、その相当な計算要求と専門知識の必要性によって、知的財産権(IP)の保護に関する重要な懸念が提起されるなど、分散システムにおける新たな課題をもたらしている。
これは、センシティブなデータとプロプライエタリなモデルの両方を保護可能な、フェデレーション付き学習アプローチの必要性を強調している。
この課題に対処するためにFedQSNを提案する。これはランダムマスキングを利用してモデルパラメータのサブネットワークを隠蔽し、残りのパラメータに量子化を適用するフェデレート学習手法である。
これにより、サーバは、各通信ラウンド中にグローバルモデルのプライバシ保護プロキシのみをクライアントに送信し、モデルの機密性を高める。
様々なモデルやタスクにまたがる実験結果から,我々の手法は,フェデレートした学習環境において,強力なモデル性能を維持するだけでなく,ベースライン手法と比較してモデルパラメータの保護の強化も達成している。
関連論文リスト
- HAD: Hybrid Architecture Distillation Outperforms Teacher in Genomic Sequence Modeling [52.58723853697152]
DNA配列モデリングのためのハイブリッドアーキテクチャ蒸留(HAD)手法を提案する。
我々はNTv2-500Mを教師モデルとして採用し,グループマスキング戦略を考案した。
類似したパラメータを持つモデルと比較して,本モデルは優れた性能を示した。
論文 参考訳(メタデータ) (2025-05-27T07:57:35Z) - Aligning Visual Contrastive learning models via Preference Optimization [0.9438963196770565]
本稿では,複雑な概念を分解するために,異なる優先度最適化(PO)手法を用いて,コントラスト学習モデルを訓練する新しい手法を提案する。
提案手法は,モデル行動と所望の嗜好を体系的に整合させ,目標タスクの性能を向上させる。
特に,CLIPのような対照的な視覚言語モデルでよく見られる,タイポグラフィー攻撃や帰納的バイアスに対するモデルロバスト性の向上に焦点を当てた。
論文 参考訳(メタデータ) (2024-11-12T08:14:54Z) - Revisiting Implicit Models: Sparsity Trade-offs Capability in
Weight-tied Model for Vision Tasks [4.872984658007499]
ディープ平衡モデル(Deep Equilibrium Models, DEQ)のような暗黙のモデルは、無限層のモデルを訓練する能力によって、コミュニティにおいて大きな注目を集めている。
暗黙のモデルの行を再検討し、それらを元の重み付けモデルに遡る。
驚くべきことに、重み付けモデルの方がDECの変種と比較して、より効率的で、安定であり、視覚タスク上でも効率的である。
論文 参考訳(メタデータ) (2023-07-16T11:45:35Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [47.432215933099016]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
既存のバイアス機能を分析し、すべてのケースに最適なモデルが存在しないことを実証します。
適切なバイアスモデルを選択することで、より洗練されたモデル設計でベースラインよりもロバスト性が得られる。
論文 参考訳(メタデータ) (2022-10-28T17:52:10Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Model Embedding Model-Based Reinforcement Learning [4.566180616886624]
モデルベース強化学習(MBRL)は、モデルフリー強化学習(MFRL)よりもサンプル効率が優れていることを示す。
しかし、データ生成の容易さとモデルのバイアスとの間には、依然としてトレードオフがある。
本稿では,確率的強化学習の枠組みとして,シンプルでエレガントなモデル埋め込み型強化学習(MEMB)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-16T15:10:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。