論文の概要: Interpretable by AI Mother Tongue: Native Symbolic Reasoning in Neural Models
- arxiv url: http://arxiv.org/abs/2508.18988v1
- Date: Tue, 26 Aug 2025 12:40:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 17:42:38.840918
- Title: Interpretable by AI Mother Tongue: Native Symbolic Reasoning in Neural Models
- Title(参考訳): AIマザートングによる解釈:ニューラルモデルにおけるネイティブシンボリック推論
- Authors: Hung Ming Liu,
- Abstract要約: ニューラルネットワークがネイティブなシンボリック言語であるAIマザートングを開発するフレームワークを提案する。
私たちのアプローチでは、推論を直接モデルの表現に組み込んでいます。
我々は,AIマザー・トングが神経モデルにおける解釈可能性,直観,象徴的推論の統一的なメカニズムとして機能することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a framework where neural models develop an AI Mother Tongue, a native symbolic language that simultaneously supports intuitive reasoning, compositional symbol chains, and inherent interpretability. Unlike post-hoc explanation methods, our approach embeds reasoning directly into the model's representations: symbols capture meaningful semantic patterns, chains trace decision paths, and gated induction mechanisms guide selective focus, yielding transparent yet flexible reasoning. We introduce complementary training objectives to enhance symbol purity and decision sparsity, and employ a sequential specialization strategy to first build broad symbolic competence and then refine intuitive judgments. Experiments on AI tasks demonstrate competitive accuracy alongside verifiable reasoning traces, showing that AI Mother Tongue can serve as a unified mechanism for interpretability, intuition, and symbolic reasoning in neural models.
- Abstract(参考訳): 本稿では、直感的推論、構成的記号連鎖、固有解釈可能性とを同時にサポートするネイティブシンボル言語である、AIマザー・トングを開発するフレームワークを提案する。
シンボルは意味のある意味的パターンをキャプチャし、トレース決定経路をチェーンし、ゲート誘導機構は選択的な焦点を導い、透明で柔軟な推論をもたらす。
シンボルの純度と決定の疎度を高めるために補完的な訓練目標を導入し、まず、広範囲のシンボル能力を構築し、直感的な判断を洗練させるために、シーケンシャルな特殊化戦略を適用した。
AIタスクの実験は、検証可能な推論トレースと競合する精度を示し、AIマザートングがニューラルモデルにおける解釈可能性、直観、象徴的推論の統一的なメカニズムとして機能することを示した。
関連論文リスト
- Model-Grounded Symbolic Artificial Intelligence Systems Learning and Reasoning with Model-Grounded Symbolic Artificial Intelligence Systems [7.000073566770884]
ニューロシンボリック人工知能(AI)システムは、ニューラルネットワークと古典的なシンボリックAIメカニズムを組み合わせたシステムである。
従来の学習や推論のパラダイムと構造的類似性を維持する新しい学習・推論手法を開発した。
論文 参考訳(メタデータ) (2025-07-14T01:34:05Z) - Discrete JEPA: Learning Discrete Token Representations without Reconstruction [23.6286989806018]
認知知性の象徴的な基礎は、観測から隠れたパターンを抽出することにある。
本稿では,意味的トークン化による潜在予測符号化フレームワークであるDisdisrete-JEPAを提案する。
我々のアプローチは、人工知能システムにおける世界モデリングと計画能力の進歩に大きな影響を与えることを約束する。
論文 参考訳(メタデータ) (2025-06-17T10:15:17Z) - VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning [86.59849798539312]
本稿では,記号的・神経的知識表現の強みを組み合わせた一階抽象言語Neuro-Symbolic Predicatesを提案する。
提案手法は, サンプルの複雑さの向上, 分布外一般化の強化, 解釈可能性の向上を実現する。
論文 参考訳(メタデータ) (2024-10-30T16:11:05Z) - Towards Symbolic XAI -- Explanation Through Human Understandable Logical Relationships Between Features [19.15360328688008]
本稿では,入力特徴間の論理的関係を表すシンボリッククエリに関連性を持つ,シンボリックXAIというフレームワークを提案する。
このフレームワークは、ユーザーによるカスタマイズと人間可読性の両方に柔軟性のある、モデルの意思決定プロセスを理解する。
論文 参考訳(メタデータ) (2024-08-30T10:52:18Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
我々は,思考の確率的言語(PLoT)に似た認知過程をモデル化するために,アトラクタダイナミクスを記号表現と統合した新しいニューラルシステムモデルを導入する。
我々のモデルは、連続表現空間を、事前定義されたプリミティブに頼るのではなく、教師なし学習を通じて、記号系の意味性と構成性の特徴を反映する、記号列に対応する引き付け状態を持つ離散盆地に分割する。
このアプローチは、認知操作の複雑な双対性を反映したより包括的なモデルを提供する、AIにおける表現力の証明された神経弁別可能な基質であるニューラルダイナミクスを通じて、シンボル処理とサブシンボル処理の両方を統合する統一的なフレームワークを確立する。
論文 参考訳(メタデータ) (2023-10-03T05:40:56Z) - A Novel Neural-symbolic System under Statistical Relational Learning [47.30190559449236]
NSF-SRLと呼ばれる統計的関係学習に基づくニューラルシンボリック・フレームワークを提案する。
シンボリック推論の結果は、深層学習モデルによる予測の洗練と修正に利用され、深層学習モデルはシンボリック推論プロセスの効率を高める。
我々は、このアプローチがニューラルシンボリックシステムの新しい標準となり、汎用人工知能の分野における将来の研究を促進すると信じている。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - Join-Chain Network: A Logical Reasoning View of the Multi-head Attention
in Transformer [59.73454783958702]
本稿では,多くの結合演算子を連結して出力論理式をモデル化するシンボリック推論アーキテクチャを提案する。
特に,このような結合鎖のアンサンブルが'ツリー構造'の1次論理式であるFOETの広い部分集合を表現できることを実証する。
変圧器における多頭部自己保持モジュールは,確率的述語空間における結合作用素の結合境界を実装する特別なニューラル演算子として理解することができる。
論文 参考訳(メタデータ) (2022-10-06T07:39:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。