論文の概要: AIM: Adaptive Intra-Network Modulation for Balanced Multimodal Learning
- arxiv url: http://arxiv.org/abs/2508.19769v1
- Date: Wed, 27 Aug 2025 10:53:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-28 19:07:41.599858
- Title: AIM: Adaptive Intra-Network Modulation for Balanced Multimodal Learning
- Title(参考訳): AIM:バランスの取れたマルチモーダル学習のための適応型ネットワーク内変調
- Authors: Shu Shen, C. L. Philip Chen, Tong Zhang,
- Abstract要約: そこで我々は,適応型ネットワーク内変調(AIM)を提案し,バランスの取れたモダリティ学習を改善する。
AIMは、変調中のネットワーク内のパラメータと深さの最適化状態の違いを考慮に入れている。
AIMは、複数のベンチマークにおいて、最先端の非バランスなモダリティ学習方法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 55.56234913868664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal learning has significantly enhanced machine learning performance but still faces numerous challenges and limitations. Imbalanced multimodal learning is one of the problems extensively studied in recent works and is typically mitigated by modulating the learning of each modality. However, we find that these methods typically hinder the dominant modality's learning to promote weaker modalities, which affects overall multimodal performance. We analyze the cause of this issue and highlight a commonly overlooked problem: optimization bias within networks. To address this, we propose Adaptive Intra-Network Modulation (AIM) to improve balanced modality learning. AIM accounts for differences in optimization state across parameters and depths within the network during modulation, achieving balanced multimodal learning without hindering either dominant or weak modalities for the first time. Specifically, AIM decouples the dominant modality's under-optimized parameters into Auxiliary Blocks and encourages reliance on these performance-degraded blocks for joint training with weaker modalities. This approach effectively prevents suppression of weaker modalities while enabling targeted optimization of under-optimized parameters to improve the dominant modality. Additionally, AIM assesses modality imbalance level across network depths and adaptively adjusts modulation strength at each depth. Experimental results demonstrate that AIM outperforms state-of-the-art imbalanced modality learning methods across multiple benchmarks and exhibits strong generalizability across different backbones, fusion strategies, and optimizers.
- Abstract(参考訳): マルチモーダル学習は機械学習のパフォーマンスを大幅に向上させたが、それでも多くの課題と制限に直面している。
非バランスなマルチモーダル学習は、最近の研究で広く研究されている問題の1つであり、典型的には各モーダルの学習を調節することによって緩和される。
しかし、これらの手法は、一般的に、より弱いモダリティを促進するために支配的なモダリティの学習を妨げることが分かっており、これは全体的なマルチモーダルのパフォーマンスに影響を与える。
我々はこの問題の原因を分析し、一般的に見過ごされている問題、すなわちネットワーク内の最適化バイアスを強調する。
これを解決するために,適応型ネットワーク内変調(AIM)を提案し,バランスの取れたモダリティ学習を改善する。
AIMは、変調中のネットワーク内のパラメータと深さの最適化状態の違いを考慮し、支配的あるいは弱いモダリティを初めて妨げることなく、バランスの取れたマルチモーダル学習を実現する。
具体的には、AIMは支配的なモダリティの最適化されていないパラメータを補助ブロックに分解し、より弱いモダリティを持つ共同トレーニングのためのこれらの性能劣化ブロックへの依存を促す。
このアプローチは、最適化されていないパラメータを目標に最適化し、支配的モダリティを改善するとともに、より弱いモダリティの抑制を効果的に防止する。
さらに、AIMはネットワーク深度間のモダリティ不均衡レベルを評価し、各深さにおける変調強度を適応的に調整する。
実験の結果、AIMは複数のベンチマークで最先端の不均衡学習法より優れており、バックボーン、融合戦略、オプティマイザに強い一般化性を示すことがわかった。
関連論文リスト
- Learning to Fuse: Modality-Aware Adaptive Scheduling for Robust Multimodal Foundation Models [0.0]
モーダリティ・アウェア・アダプティブ・フュージョン・スケジューリング(MA-AFS)は、各モーダリティの寄与をインスタンス単位で動的に調節することを学ぶ。
本研究は, 適応融合の重要性を強調し, 信頼性と不確実性を考慮したマルチモーダル学習に向けた有望な方向性を開く。
論文 参考訳(メタデータ) (2025-06-15T05:57:45Z) - Modality Equilibrium Matters: Minor-Modality-Aware Adaptive Alternating for Cross-Modal Memory Enhancement [13.424541949553964]
そこで本研究では,微調整を適応的に優先順位付けしてバランスを保ち,融合を促進させるシェープリー誘導型交互訓練フレームワークを提案する。
我々は4つのマルチモーダル・ベンチマーク・データセットのバランスと精度の両面での性能評価を行い,その手法がSOTA(State-of-the-art)の結果を達成した。
論文 参考訳(メタデータ) (2025-05-26T02:02:57Z) - PATS: Process-Level Adaptive Thinking Mode Switching [53.53401063490537]
現在の大言語モデル(LLM)は、通常、難易度に関わらず、すべての質問に対して、単純または複雑に固定された推論戦略を採用する。
このようなタスクと推論プロセスの複雑さの変化の無視は、パフォーマンスと効率のバランスを損なう。
既存の手法では, 難易度が異なる問題に対処するために, 学習不要な高速スロー思考システムを導入しようとするが, 厳密な解レベルの戦略調整によって制限される。
プロセスレベル適応思考モードスイッチング(PATS)という新しい推論パラダイムを提案し,各ステップの難易度に基づいてLLMが推論戦略を動的に調整し,そのバランスを最適化する。
論文 参考訳(メタデータ) (2025-05-25T17:58:50Z) - Asymmetric Reinforcing against Multi-modal Representation Bias [59.685072206359855]
マルチモーダル表現バイアス(ARM)に対する非対称強化法を提案する。
我々のARMは、条件付き相互情報を通じて支配的なモダリティを表現する能力を維持しながら、弱いモダリティを動的に強化する。
我々はマルチモーダル学習の性能を著しく改善し、不均衡なマルチモーダル学習の軽減に顕著な進展をもたらした。
論文 参考訳(メタデータ) (2025-01-02T13:00:06Z) - On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
マルチモーダル学習は、異なるモーダルからの情報を統合することでモデル性能を向上させることが期待されている。
広く使われている共同トレーニング戦略は、不均衡で最適化されていないユニモーダル表現につながる。
そこで本研究では,OGM(On-the-fly Prediction Modulation)とOGM(On-the-fly Gradient Modulation)の戦略を提案する。
論文 参考訳(メタデータ) (2024-10-15T13:15:50Z) - Multimodal Classification via Modal-Aware Interactive Enhancement [6.621745547882088]
モーダル・アウェア・インタラクティブ・エンハンスメント(MIE)と呼ばれる新しいマルチモーダル学習手法を提案する。
具体的には、まず、シャープネス認識最小化(SAM)に基づく最適化戦略を用いて、前フェーズにおける学習目標の円滑化を図る。
そこで, SAMの幾何学的性質の助けを借りて, 逆相における異なるモード間の影響を加味するための勾配修正戦略を提案する。
論文 参考訳(メタデータ) (2024-07-05T15:32:07Z) - Learning to Rebalance Multi-Modal Optimization by Adaptively Masking Subnetworks [13.065212096469537]
モーダル有意性を考慮した適応マスクサブネット(adaptively Mask Subnetworks, AMSS)と呼ばれる, サンプリングベース, 要素単位の結合最適化手法を提案する。
具体的には,モーダルの重要度を決定するために相互情報レートを組み込んで,パラメータ更新のために各モーダルからフォアグラウンドワークを選択するために,非一様適応サンプリングを用いる。
理論的知見に基づいて、AMSS+と呼ばれる非バイアス推定を用いたマルチモーダルマスクサブネットワーク戦略をさらに強化する。
論文 参考訳(メタデータ) (2024-04-12T09:22:24Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
MLA(Multimodal Learning with Alternating Unimodal Adaptation)を提案する。
MLAは、それを交互に一助学習プロセスに変換することで、従来の共同マルチモーダル学習プロセスを再構築する。
共有ヘッドを通じてモーダル間相互作用をキャプチャし、異なるモーダル間で連続的な最適化を行う。
実験は5つの多様なデータセットで行われ、完全なモダリティを持つシナリオと、欠落したモダリティを持つシナリオを含む。
論文 参考訳(メタデータ) (2023-11-17T18:57:40Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
本稿では,大規模な事前学習型ユニモーダルモデルを用いて,識別型マルチモーダル学習を向上する方法について検討する。
MMLoRA(Multi-Modal Low-Rank Adaptation Learning)を導入する。
論文 参考訳(メタデータ) (2023-10-08T15:01:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。