論文の概要: Logical Reasoning with Outcome Reward Models for Test-Time Scaling
- arxiv url: http://arxiv.org/abs/2508.19903v1
- Date: Wed, 27 Aug 2025 14:08:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-28 19:07:41.656824
- Title: Logical Reasoning with Outcome Reward Models for Test-Time Scaling
- Title(参考訳): テスト時間スケーリングのためのアウトカムリワードモデルによる論理推論
- Authors: Ramya Keerthy Thatikonda, Wray Buntine, Ehsan Shareghi,
- Abstract要約: 帰納的推論のためのORM(Outcome Reward Models)のセットを提示する。
ORMのトレーニングには、主にChain-of-Thought(CoT)を使って、単一のサンプルと複数のサンプルを使ってデータを生成します。
また、ORMのトレーニングデータセットでカバーされるエラーの種類をさらに拡大するための新しい戦術を提案する。
- 参考スコア(独自算出の注目度): 10.795521518273214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Logical reasoning is a critical benchmark for evaluating the capabilities of large language models (LLMs), as it reflects their ability to derive valid conclusions from given premises. While the combination of test-time scaling with dedicated outcome or process reward models has opened up new avenues to enhance LLMs performance in complex reasoning tasks, this space is under-explored in deductive logical reasoning. We present a set of Outcome Reward Models (ORMs) for deductive reasoning. To train the ORMs we mainly generate data using Chain-of-Thought (CoT) with single and multiple samples. Additionally, we propose a novel tactic to further expand the type of errors covered in the training dataset of the ORM. In particular, we propose an echo generation technique that leverages LLMs' tendency to reflect incorrect assumptions made in prompts to extract additional training data, covering previously unexplored error types. While a standard CoT chain may contain errors likely to be made by the reasoner, the echo strategy deliberately steers the model toward incorrect reasoning. We show that ORMs trained on CoT and echo-augmented data demonstrate improved performance on the FOLIO, JustLogic, and ProverQA datasets across four different LLMs.
- Abstract(参考訳): 論理的推論は、大規模言語モデル(LLM)の機能を評価する上で重要なベンチマークである。
テストタイムスケーリングと専用結果とプロセス報酬モデルを組み合わせることで、複雑な推論タスクにおけるLCMのパフォーマンスを向上させるための新たな道が開かれたが、この空間は帰納的論理的推論において過小評価されている。
帰納的推論のためのORM(Outcome Reward Models)のセットを提示する。
ORMのトレーニングには、主にChain-of-Thought(CoT)を使って、単一のサンプルと複数のサンプルを使ってデータを生成します。
さらに、ORMのトレーニングデータセットでカバーされるエラーの種類をさらに拡大するための新しい戦術を提案する。
特に,LLMの傾向を反映したエコー生成手法を提案する。
標準的なCoT連鎖は、推論者によってなされる可能性のあるエラーを含む可能性があるが、エコー戦略は、意図的に間違った推論に向けてモデルを操縦する。
我々は、CoTとエコー拡張データに基づいてトレーニングされたORMが、FOLIO、JustLogic、ProverQAデータセットを4つの異なるLLMで改善したことを示す。
関連論文リスト
- Verifying the Verifiers: Unveiling Pitfalls and Potentials in Fact Verifiers [59.168391398830515]
我々は,14のファクトチェックベンチマークのサンプルを用いて,12の事前学習LDMと1つの特殊ファクト検証器を評価した。
データセットにおけるアノテーションエラーとあいまいさに対処することの重要性を強調します。
最上位のパフォーマンスを実現するために、前作でしばしば見落とされがちな、数ショットのインコンテキストの例を持つフロンティアLSM。
論文 参考訳(メタデータ) (2025-06-16T10:32:10Z) - The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models [69.798277882245]
大規模言語モデルの推論効率を向上させるために,Unsupervised Prefix Fine-Tuning (UPFT)を導入した。
UPFTはラベル付きデータや徹底的なサンプリングの必要性を取り除く。
実験の結果,UPFTは教師付き手法の性能と一致していることがわかった。
論文 参考訳(メタデータ) (2025-03-04T18:56:03Z) - CounterBench: A Benchmark for Counterfactuals Reasoning in Large Language Models [5.409370027524351]
本研究では, 大規模言語モデル(LLM)の性能評価を行った。
我々は,新しいベンチマークデータセットであるCounterBenchを紹介した。
論文 参考訳(メタデータ) (2025-02-16T06:19:37Z) - Understanding Chain-of-Thought in LLMs through Information Theory [16.78730663293352]
我々は,情報理論レンズを用いて,大規模言語モデル(LLM)におけるChain-of-Thought(CoT)推論を定式化する。
具体的には、各推論ステップにおける「情報ゲイン」を定量化し、障害モードの識別を可能にする。
我々は,おもちゃの算術, GSM8K, PRM800kデータセットに関する広範な実験を通じて,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-11-18T19:14:36Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - Disperse-Then-Merge: Pushing the Limits of Instruction Tuning via Alignment Tax Reduction [75.25114727856861]
大規模言語モデル(LLM)は、スーパービジョンされた微調整プロセスの後半で劣化する傾向にある。
この問題に対処するための単純な分散結合フレームワークを導入する。
我々のフレームワークは、一連の標準知識と推論ベンチマークに基づいて、データキュレーションや正規化の訓練など、様々な高度な手法より優れています。
論文 参考訳(メタデータ) (2024-05-22T08:18:19Z) - AS-ES Learning: Towards Efficient CoT Learning in Small Models [35.225382243612174]
CoT(Chain-of-Thought)は,大規模言語モデル(LLM)において重要な出現能力として機能する
本稿では,CoT内固有の情報を反復生成に活用したAS-ES学習手法を提案する。
実験により,データ拡張やモデル自体の変更を伴わずに,MWPやPET要約などのCoT集約タスクにおけるSeq2seqトレーニングを超越した手法が得られた。
論文 参考訳(メタデータ) (2024-03-04T12:13:59Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
大規模言語モデル(LLM)は汎用AIエージェントとして広く利用されている。
本稿では,入力コンテキストの縮小バージョンを生成するために,言語モデルを微調整するフレームワークであるLearning to Reduceを提案する。
入力コンテキストから関連する証拠を選択する際に,本モデルが同等の精度を達成することを示す。
論文 参考訳(メタデータ) (2024-02-22T00:41:23Z) - Explaining Emergent In-Context Learning as Kernel Regression [61.57151500616111]
大規模言語モデル(LLM)は、伝達学習のパラダイムシフトを開始した。
本稿では,トランスフォーマーに基づく言語モデルが事前学習後に文脈内学習を達成できる理由について検討する。
ICL中、LLMの注意と隠れた特徴は、カーネル回帰の挙動と一致していることがわかった。
論文 参考訳(メタデータ) (2023-05-22T06:45:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。