論文の概要: Heterogeneous Self-Supervised Acoustic Pre-Training with Local Constraints
- arxiv url: http://arxiv.org/abs/2508.19990v2
- Date: Mon, 08 Sep 2025 18:21:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-10 14:38:26.933472
- Title: Heterogeneous Self-Supervised Acoustic Pre-Training with Local Constraints
- Title(参考訳): 局所的制約を考慮した不均一な自己監督型音響事前訓練
- Authors: Xiaodong Cui, A F M Saif, Brian Kingsbury, Tianyi Chen,
- Abstract要約: 異種データを扱うための自己教師付き事前学習手法を提案する。
提案手法は、下流の教師付き微調整タスクに対する自己教師付き事前訓練モデルの適応性を大幅に向上させることができる。
- 参考スコア(独自算出の注目度): 64.15709757611369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised pre-training using unlabeled data is widely used in automatic speech recognition. In this paper, we propose a new self-supervised pre-training approach to dealing with heterogeneous data. Instead of mixing all the data and minimizing the averaged global loss in the conventional way, we impose additional local constraints to ensure that the model optimizes each source of heterogeneous data to its local optimum after $K$-step gradient descent initialized from the model. We formulate this as a bilevel optimization problem, and use the first-order approximation method to solve the problem. We discuss its connection to model-agnostic meta learning. Experiments are carried out on self-supervised pre-training using multi-domain and multilingual datasets, demonstrating that the proposed approach can significantly improve the adaptivity of the self-supervised pre-trained model for the downstream supervised fine-tuning tasks.
- Abstract(参考訳): ラベルなしデータを用いた自己教師付き事前学習は,音声認識において広く利用されている。
本稿では,異種データを扱うための自己教師型事前学習手法を提案する。
従来の方法では,すべてのデータを混合し,平均的グローバル損失を最小化する代わりに,モデルから初期化した$K$-step勾配の後に,モデルが各異種データのソースを局所的最適に最適化するように,局所的制約を課す。
この問題を二段階最適化問題として定式化し,一階近似法を用いて解決する。
モデルに依存しないメタ学習との関連について論じる。
マルチドメインおよび多言語データセットを用いた自己教師付き事前学習実験を行い、提案手法が下流教師付き微調整タスクに対する自己教師付き事前訓練モデルの適応性を著しく改善できることを実証した。
関連論文リスト
- A Scalable Pretraining Framework for Link Prediction with Efficient Adaptation [16.82426251068573]
リンク予測(LP)は、グラフ機械学習において重要なタスクである。
既存の手法は、疎結合性からの限られた監督を含む重要な課題に直面している。
これらの課題に対処するためのソリューションとして,事前学習について検討する。
論文 参考訳(メタデータ) (2025-08-06T17:10:31Z) - Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
独自の予測と潜在的にノイズの多いラベルを使ってモデルをトレーニングすることは、モデルパフォーマンスを改善するためのよく知られた戦略である。
本稿では,モデルの予測と提供ラベルを最適に組み合わせる方法について論じる。
我々の主な貢献は、現在のモデルの予測と与えられたラベルを組み合わせたベイズ最適集約関数の導出である。
論文 参考訳(メタデータ) (2025-05-21T07:16:44Z) - Probabilistic Federated Prompt-Tuning with Non-IID and Imbalanced Data [35.47385526394076]
微調整事前学習モデルは、適度なデータで複雑なタスクを解決する機械学習の一般的なアプローチである。
事前訓練されたモデル全体を微調整することは、ローカルデータ分布が多様に歪んだフェデレーションデータシナリオでは効果がない。
提案手法は,フェデレーション学習を分散集合モデリングタスクに変換し,事前学習したモデルを世界規模で微調整するための多様なプロンプトを集約する。
論文 参考訳(メタデータ) (2025-02-27T04:31:34Z) - Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences [6.067007470552307]
そこで本研究では,リトレーニングを繰り返して安定なモデル列を見つけるためのモデルに依存しないフレームワークを提案する。
最適モデルの復元が保証される混合整数最適化の定式化を開発する。
平均的に、予測力の2%の低下は、安定性の30%の改善につながることが判明した。
論文 参考訳(メタデータ) (2024-03-28T22:45:38Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
ラベルなしデータセットを、効率的な自己教師付き学習(SSL)のための小さな合成サンプル群に蒸留する新しい問題を提案する。
両レベル最適化におけるSSL目標に対する合成サンプルの勾配は、データ拡張やマスキングから生じるランダム性から、テキストバイアスを受けていることを最初に証明する。
転送学習を含む様々な応用における本手法の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2023-10-10T10:48:52Z) - Mixed Semi-Supervised Generalized-Linear-Regression with Applications to Deep-Learning and Interpolators [6.537685198688539]
本稿では、ラベルのないデータを用いて、半教師付き学習法(SSL)を設計する手法を提案する。
それぞれに$alpha$という混合パラメータが含まれており、ラベルのないデータに与えられる重みを制御する。
我々は,標準教師付きモデルと比較して,大幅な改善を実現するための方法論の有効性を実証する。
論文 参考訳(メタデータ) (2023-02-19T09:55:18Z) - Self-Distillation for Further Pre-training of Transformers [83.84227016847096]
我々は、さらなる事前学習段階の正則化として自己蒸留を提案する。
画像およびテキスト分類タスクのための様々なベンチマークデータセットにおける自己蒸留の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2022-09-30T02:25:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。