論文の概要: Bridging Domain Gaps for Fine-Grained Moth Classification Through Expert-Informed Adaptation and Foundation Model Priors
- arxiv url: http://arxiv.org/abs/2508.20089v1
- Date: Wed, 27 Aug 2025 17:55:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-28 19:07:41.729765
- Title: Bridging Domain Gaps for Fine-Grained Moth Classification Through Expert-Informed Adaptation and Foundation Model Priors
- Title(参考訳): エキスパートインフォームド適応とファンデーションモデルによる細粒度マス分類のためのブリッジングドメインギャップ
- Authors: Ross J Gardiner, Guillaume Mougeot, Sareh Rowlands, Benno I Simmons, Flemming Helsing, Toke Thomas Høye,
- Abstract要約: 本稿では,知識蒸留による限られた専門分野データを組み合わせた軽量な分類手法を提案する。
AMIカメラシステムから得られた101種のデンマーク・モスの実験では、BioCLIP2が他の方法よりもかなり優れていることが示されている。
これらの知見は、効率的な昆虫監視システムの開発のための実践的ガイドラインを提供する。
- 参考スコア(独自算出の注目度): 0.18914065769207292
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Labelling images of Lepidoptera (moths) from automated camera systems is vital for understanding insect declines. However, accurate species identification is challenging due to domain shifts between curated images and noisy field imagery. We propose a lightweight classification approach, combining limited expert-labelled field data with knowledge distillation from the high-performance BioCLIP2 foundation model into a ConvNeXt-tiny architecture. Experiments on 101 Danish moth species from AMI camera systems demonstrate that BioCLIP2 substantially outperforms other methods and that our distilled lightweight model achieves comparable accuracy with significantly reduced computational cost. These insights offer practical guidelines for the development of efficient insect monitoring systems and bridging domain gaps for fine-grained classification.
- Abstract(参考訳): 自動カメラシステムからレピドプテリウム(昆虫)のイメージを盗むことは、昆虫の減少を理解するのに不可欠である。
しかし、キュレートされた画像とノイズの多いフィールド画像の間の領域シフトのため、正確な種識別は困難である。
本稿では,高性能なBioCLIP2ファンデーションモデルから知識蒸留を,限られた専門家ラベル付きフィールドデータと組み合わせて,ConvNeXt-tinyアーキテクチャに軽量な分類手法を提案する。
AMIカメラシステムから得られた101種のデンマークムシに対する実験により、BioCLIP2は他の方法よりも大幅に優れており、我々の蒸留された軽量モデルは計算コストを大幅に削減して同等の精度を達成できることを示した。
これらの知見は、効率的な昆虫監視システムの開発のための実践的ガイドラインと、きめ細かい分類のためのブリッジングドメインギャップを提供する。
関連論文リスト
- BeetleVerse: A Study on Taxonomic Classification of Ground Beetles [0.310688583550805]
地上の甲虫は、非常に敏感で特異な生物学的指標であり、生物多様性のモニタリングに不可欠である。
本稿では,4つの多種多様な長い尾を持つデータセットの分類分類に関する12の視覚モデルを評価する。
その結果,視覚と言語変換器を頭部と組み合わせたモデルが最も優れており,97%の精度で種・種レベルでの精度が得られた。
論文 参考訳(メタデータ) (2025-04-18T01:06:37Z) - Low Cost Machine Vision for Insect Classification [33.7054351451505]
本稿では,低コストでスケーラブルなオープンソースシステムとして開発されたマルチセンサシステムの一部として,イメージング手法を提案する。
このシステムは、同じ昆虫種16種と異なる属、家系、順序からなるデータセットで、例に評価される。
種間類似度の高い種を分類するためには,昆虫のイメージトリミングが必要であることが証明された。
論文 参考訳(メタデータ) (2024-04-26T15:43:24Z) - InsectMamba: Insect Pest Classification with State Space Model [8.470757741028661]
InsectMambaは、ステートスペースモデル(SSM)、畳み込みニューラルネットワーク(CNN)、マルチヘッド自己認識機構(MSA)、マルチレイヤパーセプトロン(MLP)をMix-SSMブロックに統合する新しいアプローチである。
5種類の害虫分類データセットの強い競争相手に対して評価された。
論文 参考訳(メタデータ) (2024-04-04T17:34:21Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
本研究では,様々な生成手法から偽画像を検出することを目的とした,一般化可能な合成画像検出の課題について検討する。
本稿では,FatFormerという新しいフォージェリー適応トランスフォーマー手法を提案する。
提案手法は, 平均98%の精度でGANを観測し, 95%の精度で拡散モデルを解析した。
論文 参考訳(メタデータ) (2023-12-27T17:36:32Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
BMSB(Halyomorpha halys)は、数種の作物を害する世界的重要性の害虫である。
本研究は、BMSB検体を検出する技術として、NIR-HSI(Near Infrared Hyperspectral Imaging)を実験室レベルで予備評価する。
論文 参考訳(メタデータ) (2023-01-19T11:37:20Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - An Efficient Insect Pest Classification Using Multiple Convolutional
Neural Network Based Models [0.3222802562733786]
昆虫の分類は、様々な種類、スケール、形状、フィールドの複雑な背景、昆虫種間の外観的類似性から難しい課題である。
本研究では、注目、特徴ピラミッド、きめ細かいモデルを含む、さまざまな畳み込みニューラルネットワークベースのモデルを提示する。
実験の結果、これらの畳み込みニューラルネットワークベースのモデルを組み合わせることで、これらの2つのデータセットの最先端の手法よりもパフォーマンスが向上することが示された。
論文 参考訳(メタデータ) (2021-07-26T12:53:28Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
本研究では,2視点の葉のイメージ表現に基づく新しい手法と,植物種の粒度認識のための階層的分類戦略を提案する。
シームズ畳み込みニューラルネットワークに基づく深度測定は、多数のトレーニングサンプルへの依存を減らし、新しい植物種に拡張性を持たせるために用いられる。
論文 参考訳(メタデータ) (2020-05-18T21:57:47Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。