論文の概要: Generalizable AI Model for Indoor Temperature Forecasting Across Sub-Saharan Africa
- arxiv url: http://arxiv.org/abs/2508.20260v1
- Date: Wed, 27 Aug 2025 20:32:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-29 18:12:01.81738
- Title: Generalizable AI Model for Indoor Temperature Forecasting Across Sub-Saharan Africa
- Title(参考訳): サハラ以南のアフリカにおける室内温度予測のための一般化可能なAIモデル
- Authors: Zainab Akhtar, Eunice Jengo, Björn Haßler,
- Abstract要約: このモデルはTemp-AI-Estimatorフレームワークを拡張し、タンザニアの学校データに基づいて訓練し、ナイジェリアの学校やガンビアの家庭で評価する。
ナイジェリアの学校では1.45degC、ガンビアの家庭では0.65degCという絶対誤差がある。
- 参考スコア(独自算出の注目度): 0.5735035463793009
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a lightweight, domain-informed AI model for predicting indoor temperatures in naturally ventilated schools and homes in Sub-Saharan Africa. The model extends the Temp-AI-Estimator framework, trained on Tanzanian school data, and evaluated on Nigerian schools and Gambian homes. It achieves robust cross-country performance using only minimal accessible inputs, with mean absolute errors of 1.45{\deg}C for Nigerian schools and 0.65{\deg}C for Gambian homes. These findings highlight AI's potential for thermal comfort management in resource-constrained environments.
- Abstract(参考訳): 本研究では,サハラ以南のアフリカの自然換気学校や家庭の室内温度を予測するための,軽量でドメインインフォームドAIモデルを提案する。
このモデルはTemp-AI-Estimatorフレームワークを拡張し、タンザニアの学校データに基づいて訓練し、ナイジェリアの学校やガンビアの家庭で評価する。
ナイジェリアの学校では1.45{\deg}C、ガンビアの家庭では0.65{\deg}Cという絶対誤差がある。
これらの知見は、資源制約環境における熱的快適管理に対するAIの可能性を浮き彫りにしている。
関連論文リスト
- Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river [0.2968738145616401]
この分析は、2017年2月、カリフォルニア州北部で起きたオロビルダムの流出事故に繋がった、極端に大気中の川のエピソードに基づいている。
過去と将来のシミュレーションは、インダストリアル前と21世紀後半の気温変化信号で初期条件を摂動することで生成される。
全体として、AIモデルは有望な結果を示し、現在のオロビルダムにおける統合水蒸気は、工業以前のものに比べて5-6%増加したと予測している。
論文 参考訳(メタデータ) (2024-09-17T23:34:39Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
激しい対流嵐は最も危険な気象現象であり、正確な予測は影響を緩和する。
最近リリースされたAIベースの天気モデルスイートは、中距離の予測を数秒で生成する。
本稿では,再解析とECMWFの運用数値天気予報モデルISSに対して,対流パラメータを対象とした3つのAIモデルの予測能力を評価する。
論文 参考訳(メタデータ) (2024-06-13T07:46:03Z) - Enhancing personalised thermal comfort models with Active Learning for
improved HVAC controls [0.8192907805418583]
本研究では,アクティブラーニング(AL)によって強化された熱的嗜好に基づくHVAC制御フレームワークを提案する。
予備的な結果から, AL対応OCCと従来のOCCとのラベリング効果は著しく低下するが, 省エネ効果はわずかであった。
論文 参考訳(メタデータ) (2023-09-16T18:42:58Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Toward A Dynamic Comfort Model for Human-Building Interaction in Grid-Interactive Efficient Buildings: Supported by Field Data [0.35706421570231006]
最も暑い日に自動的にサーモスタットを温めるアプローチは、ヒューマンビルディングインタラクション(HBI)を無視して効果を損なう
本研究の目的は、グリッド・インタラクティブ・ビルディング(GEB)の制御設計に使用されるHBIの工学モデルを開発する上での課題と機会を定義することである。
論文 参考訳(メタデータ) (2023-03-10T14:50:26Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - Statistical Downscaling of Temperature Distributions from the Synoptic
Scale to the Mesoscale Using Deep Convolutional Neural Networks [0.0]
有望な応用の1つは、低分解能ダイナミックモデルの出力画像を高分解能画像に変換する統計的代理モデルを開発することである。
本研究では,6時間毎に合成温度場をメソスケール温度場にダウンスケールする代理モデルについて検討した。
代理モデルが短時間で実施されれば、高解像度の天気予報ガイダンスや環境緊急警報を低コストで提供する。
論文 参考訳(メタデータ) (2020-07-20T06:24:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。