論文の概要: Enhancing Health Fact-Checking with LLM-Generated Synthetic Data
- arxiv url: http://arxiv.org/abs/2508.20525v1
- Date: Thu, 28 Aug 2025 08:06:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-29 18:12:02.182874
- Title: Enhancing Health Fact-Checking with LLM-Generated Synthetic Data
- Title(参考訳): LLM生成合成データによる健康チェックの強化
- Authors: Jingze Zhang, Jiahe Qian, Yiliang Zhou, Yifan Peng,
- Abstract要約: 本研究では、健康関連事実チェックのためのトレーニングデータを強化するための合成データ生成パイプラインを提案する。
PubHealthとSciFactの2つの公開データセットの評価は、私たちのパイプラインがF1スコアを最大0.019と0.049に改善したことを示している。
- 参考スコア(独自算出の注目度): 8.291085986309803
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fact-checking for health-related content is challenging due to the limited availability of annotated training data. In this study, we propose a synthetic data generation pipeline that leverages large language models (LLMs) to augment training data for health-related fact checking. In this pipeline, we summarize source documents, decompose the summaries into atomic facts, and use an LLM to construct sentence-fact entailment tables. From the entailment relations in the table, we further generate synthetic text-claim pairs with binary veracity labels. These synthetic data are then combined with the original data to fine-tune a BERT-based fact-checking model. Evaluation on two public datasets, PubHealth and SciFact, shows that our pipeline improved F1 scores by up to 0.019 and 0.049, respectively, compared to models trained only on the original data. These results highlight the effectiveness of LLM-driven synthetic data augmentation in enhancing the performance of health-related fact-checkers.
- Abstract(参考訳): 注釈付きトレーニングデータの入手が限られているため、健康関連コンテンツのファクトチェックは困難である。
本研究では,大規模言語モデル(LLM)を活用し,健康関連事実チェックのためのトレーニングデータを強化する合成データ生成パイプラインを提案する。
このパイプラインでは、ソース文書を要約し、要約をアトミックな事実に分解し、LLMを用いて文ファクトのentailment tableを構築する。
テーブル内の包含関係から,2値の精度ラベルを持つ合成テキスト定義ペアを更に生成する。
これらの合成データを元のデータと組み合わせて、BERTベースのファクトチェックモデルを微調整する。
PubHealthとSciFactの2つの公開データセットを評価すると、私たちのパイプラインは、元のデータでのみトレーニングされたモデルと比較して、F1スコアを最大0.019と0.049に改善しました。
これらの結果は、健康関連ファクトチェッカーの性能向上にLLM駆動型合成データ拡張の有効性を浮き彫りにした。
関連論文リスト
- LLM-TabLogic: Preserving Inter-Column Logical Relationships in Synthetic Tabular Data via Prompt-Guided Latent Diffusion [49.898152180805454]
合成データセットはドメイン固有の論理的一貫性を維持する必要がある。
既存の生成モデルは、しばしばこれらのカラム間の関係を見落としている。
本研究では,ドメイン知識を必要とせずに列間関係を効果的に維持する手法を提案する。
論文 参考訳(メタデータ) (2025-03-04T00:47:52Z) - Few-shot LLM Synthetic Data with Distribution Matching [37.55363714371521]
大規模言語モデル(LLM)は、より小さなモデルの性能を高めるために高品質な合成データを生成する。
LLMの生成した合成データは、しばしばキー言語属性の実際のデータとは異なる。
鍵属性分布マッチングに基づく合成データ生成およびフィルタリングフレームワークであるSynAlignを紹介する。
論文 参考訳(メタデータ) (2025-02-09T16:43:32Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
大規模言語モデル(LLM)は多様なタスクに使われてきたが、特徴と対象変数の正確な相関は捉えていない。
そこで本研究では,LLMに基づく3つの重要な改良を加えて,実データの特徴クラス相関を正しく把握する手法を提案する。
実験の結果,本手法は下流タスクにおいて,20個のデータセット上で10個のSOTAベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-10-29T04:14:32Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
モデル性能はトレーニングデータの圧縮比と負の相関関係にあり,トレーニング損失が小さくなるのが普通である。
エントロピー法則の知見に基づいて, 極めて効率的で普遍的なデータ選択法を提案する。
また,モデルトレーニング開始時の潜在的な性能リスクを検出するエントロピー法則の興味深い応用を提案する。
論文 参考訳(メタデータ) (2024-07-09T08:14:29Z) - Improving Grammatical Error Correction via Contextual Data Augmentation [49.746484518527716]
本研究では,文脈拡張に基づく合成データ構築手法を提案する。
具体的には、ルールベースの置換とモデルベースの生成を組み合わせる。
また,合成データにおけるノイズラベルの効果を軽減するために,レザベリングに基づくデータクリーニング手法を提案する。
論文 参考訳(メタデータ) (2024-06-25T10:49:56Z) - FactGenius: Combining Zero-Shot Prompting and Fuzzy Relation Mining to Improve Fact Verification with Knowledge Graphs [0.0]
FactGeniusは,大規模言語モデルのゼロショットプロンプトと知識グラフ上のファジィテキストマッチングを組み合わせることで,ファクトチェックを強化する新しい手法である。
事実検証のベンチマークデータセットであるFactKG上でのFactGeniusの評価は、既存のベースラインを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-06-03T13:24:37Z) - EPIC: Effective Prompting for Imbalanced-Class Data Synthesis in Tabular Data Classification via Large Language Models [39.347666307218006]
大規模言語モデル (LLM) は、多様なアプリケーションにまたがるテキスト内学習能力を示す。
バランスの取れたデータサンプルと一貫したフォーマットと独自の変数マッピングを併用した新しい手法であるEPICを導入し、不均衡なデータセットであっても、全てのクラスで正確な合成データを生成するのにLLMをガイドする。
論文 参考訳(メタデータ) (2024-04-15T17:49:16Z) - Falsesum: Generating Document-level NLI Examples for Recognizing Factual
Inconsistency in Summarization [63.21819285337555]
高品質なタスク指向の例でトレーニングデータを拡張した場合,NLIモデルがこのタスクに有効であることを示す。
我々は、制御可能なテキスト生成モデルを利用して、人間の注釈付き要約を摂動させるデータ生成パイプラインであるFalsesumを紹介した。
本研究では,Falsesumを付加したNLIデータセットでトレーニングしたモデルにより,4つのベンチマークを用いて,要約における事実整合性を検出することにより,最先端のパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2022-05-12T10:43:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。