論文の概要: Adapting Foundation Model for Dental Caries Detection with Dual-View Co-Training
- arxiv url: http://arxiv.org/abs/2508.20813v1
- Date: Thu, 28 Aug 2025 14:13:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-29 18:12:02.439924
- Title: Adapting Foundation Model for Dental Caries Detection with Dual-View Co-Training
- Title(参考訳): Dual-View Co-Training を用いた歯列検出のための基礎モデルの適用
- Authors: Tao Luo, Han Wu, Tong Yang, Dinggang Shen, Zhiming Cui,
- Abstract要約: 本稿では, 歯列検出のための新しいDual-View Co-TrainingネットワークであるAttention-TNetについて紹介する。
OurTNetは、自動歯肉検出を用いて、パノラマX線画像からのグローバルビューと、収穫した歯肉画像からのローカルビューの2つの補完的なビューを確立する。
両ビューからの情報を効果的に統合するために,Gated Cross-Viewモジュールを導入する。
- 参考スコア(独自算出の注目度): 53.77904429789069
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate dental caries detection from panoramic X-rays plays a pivotal role in preventing lesion progression. However, current detection methods often yield suboptimal accuracy due to subtle contrast variations and diverse lesion morphology of dental caries. In this work, inspired by the clinical workflow where dentists systematically combine whole-image screening with detailed tooth-level inspection, we present DVCTNet, a novel Dual-View Co-Training network for accurate dental caries detection. Our DVCTNet starts with employing automated tooth detection to establish two complementary views: a global view from panoramic X-ray images and a local view from cropped tooth images. We then pretrain two vision foundation models separately on the two views. The global-view foundation model serves as the detection backbone, generating region proposals and global features, while the local-view model extracts detailed features from corresponding cropped tooth patches matched by the region proposals. To effectively integrate information from both views, we introduce a Gated Cross-View Attention (GCV-Atten) module that dynamically fuses dual-view features, enhancing the detection pipeline by integrating the fused features back into the detection model for final caries detection. To rigorously evaluate our DVCTNet, we test it on a public dataset and further validate its performance on a newly curated, high-precision dental caries detection dataset, annotated using both intra-oral images and panoramic X-rays for double verification. Experimental results demonstrate DVCTNet's superior performance against existing state-of-the-art (SOTA) methods on both datasets, indicating the clinical applicability of our method. Our code and labeled dataset are available at https://github.com/ShanghaiTech-IMPACT/DVCTNet.
- Abstract(参考訳): パノラマX線からの正確な歯列検出は、病変の進行を防ぐために重要な役割を担っている。
しかし, 歯列の微妙なコントラスト変化と多彩な病変形態が原因で, 診断精度が低下することが多かった。
本研究は, 歯科医が全身検診と詳細な歯面検査を体系的に組み合わせた臨床ワークフローに触発され, DVCTNetという, 歯列検出のための新しいDual-View Co-Trainingネットワークを提案する。
我々のDVCTNetは、自動歯肉検出を用いて、パノラマX線画像からのグローバルビューと、収穫した歯肉画像からのローカルビューの2つの補完的なビューを確立します。
次に、2つの視点で2つの視覚基盤モデルを個別に事前訓練する。
グローバルビューファンデーションモデルは,検出バックボーンとして機能し,地域提案とグローバル特徴を生成し,ローカルビューモデルは,地域提案に適合する収穫歯のパッチから詳細な特徴を抽出する。
両ビューからの情報を効果的に統合するために,デュアルビュー機能を動的に融合するGCV-Attenモジュールを導入する。
口腔内画像とパノラマX線でアノテートして二重検証を行い,DVCTNetを公開データセットで厳格に評価した。
その結果,DVCTNetは既存のSOTA法よりも優れた性能を示し,臨床応用の可能性を示した。
私たちのコードとラベル付きデータセットはhttps://github.com/ShanghaiTech-IMPACT/DVCTNet.comで公開されています。
関連論文リスト
- Tooth-Diffusion: Guided 3D CBCT Synthesis with Fine-Grained Tooth Conditioning [0.0]
歯面2次属性でガイドされた3次元歯量生成のための条件付き拡散フレームワークを提案する。
本手法では,ウェーブレットをベースとした denoising diffusion, FiLM conditioning, マスク付き損失関数を統合して, 関連する解剖学的構造を学習する。
その結果, FIDスコアが低く, 塗装性能が良好で, SSIM値が0.91以上であった。
論文 参考訳(メタデータ) (2025-08-19T21:21:35Z) - Dual-Image Enhanced CLIP for Zero-Shot Anomaly Detection [58.228940066769596]
本稿では,統合視覚言語スコアリングシステムを活用したデュアルイメージ強化CLIP手法を提案する。
提案手法は,画像のペアを処理し,それぞれを視覚的参照として利用することにより,視覚的コンテキストによる推論プロセスを強化する。
提案手法は視覚言語による関節異常検出の可能性を大幅に活用し,従来のSOTA法と同等の性能を示す。
論文 参考訳(メタデータ) (2024-05-08T03:13:20Z) - Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
リアルタイムガイドワイヤ分割と追跡のための2段階のディープラーニングフレームワークを提案する。
第1段階では、ヨロフ5検出器が元のX線画像と合成画像を使って訓練され、ターゲットのガイドワイヤのバウンディングボックスを出力する。
第2段階では、検出された各バウンディングボックスにガイドワイヤを分割するために、新規で効率的なネットワークが提案されている。
論文 参考訳(メタデータ) (2024-04-12T20:39:19Z) - Multiclass Segmentation using Teeth Attention Modules for Dental X-ray
Images [8.041659727964305]
本研究では,スイニングトランスフォーマーとTABを用いたM-Net様構造を取り入れた新しい歯のセグメンテーションモデルを提案する。
提案したTABは、歯の複雑な構造に特化するユニークな注意機構を利用する。
提案アーキテクチャは,各歯とその周辺構造を正確に定義し,局所的およびグローバルな文脈情報を効果的に取得する。
論文 参考訳(メタデータ) (2023-11-07T06:20:34Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
TS-MDLの最初の段階では、mphiMeshSegNetは0.953pm0.076$で平均Dice類似係数(DSC)に達した。
PointNet-Reg は平均絶対誤差 (MAE) が 0.623pm0.718, mm$ であり、ランドマーク検出の他のネットワークよりも優れている。
論文 参考訳(メタデータ) (2021-09-24T13:00:26Z) - SERV-CT: A disparity dataset from CT for validation of endoscopic 3D
reconstruction [8.448866668577946]
CT(SERV-CT)に基づく立体内視鏡再構成検証データセットを提案する。
SERV-CTデータセットは、内視鏡画像の大部分をカバーするスムーズな参照格差と深さを持つ外科的アプリケーションのための使いやすい立体的検証を提供します。
論文 参考訳(メタデータ) (2020-12-22T01:28:30Z) - An Adaptive Enhancement Based Hybrid CNN Model for Digital Dental X-ray
Positions Classification [1.0672152844970149]
適応ヒストグラム等化と畳み込みニューラルネットワーク(CNN)に基づく新しい解法を提案する。
テストセットの精度と特異性は90%を超え、AUCは0.97に達した。
論文 参考訳(メタデータ) (2020-05-01T13:55:44Z) - Pose-Aware Instance Segmentation Framework from Cone Beam CT Images for
Tooth Segmentation [9.880428545498662]
コーンビームCT(CBCT)画像からの個々の歯のセグメンテーションは矯正構造の解剖学的理解に不可欠である。
CBCT画像中の重金属人工物の存在は、個々の歯の正確なセグメンテーションを妨げる。
本稿では,金属製品に対して堅牢なインスタンスセグメンテーションフレームワークを活用するために,ピクセルワイズラベリングのためのニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-02-06T07:57:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。