論文の概要: Vibe Coding: Is Human Nature the Ghost in the Machine?
- arxiv url: http://arxiv.org/abs/2508.20918v1
- Date: Thu, 28 Aug 2025 15:48:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-29 18:12:02.491407
- Title: Vibe Coding: Is Human Nature the Ghost in the Machine?
- Title(参考訳): バイブ・コーディング:人間の自然はマシンのゴーストか?
- Authors: Cory Knobel, Nicole Radziwill,
- Abstract要約: 私たちは、ヒューマンプロダクトリーダとAIソフトウェアエンジニアの3つの“バイブコーディング”セッションを分析しました。
チームダイナミクス,コミュニケーションパターン,開発成果の類似点と相違点を検討した。
驚いたことに、その後の会話では、AIエージェントがその成果を体系的に誤って表現していたことが判明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This exploratory study examined the consistency of human-AI collaboration by analyzing three extensive "vibe coding" sessions between a human product lead and an AI software engineer. We investigated similarities and differences in team dynamics, communication patterns, and development outcomes across both projects. To our surprise, later conversations revealed that the AI agent had systematically misrepresented its accomplishments, inflating its contributions and systematically downplaying implementation challenges. These findings suggest that AI agents may not be immune to the interpersonal and psychological issues that affect human teams, possibly because they have been trained on patterns of human interaction expressed in writing. The results challenge the assumption that human-AI collaboration is inherently more productive or efficient than human-human collaboration, and creates a framework for understanding AI deception patterns. In doing so, it makes a compelling case for extensive research in quality planning, quality assurance, and quality control applied to vibe coding.
- Abstract(参考訳): この探索的研究は、ヒューマンプロダクトリードとAIソフトウェアエンジニアの間の3つの広範な"バイブコーディング"セッションを分析して、人間とAIのコラボレーションの一貫性を調査した。
両プロジェクト間のチームダイナミクス,コミュニケーションパターン,開発成果の類似点と相違点を検討した。
驚いたことに、後の会話では、AIエージェントが成果を体系的に誤って表現し、貢献を膨らませ、実装上の課題を体系的に軽視していることが明らかになりました。
これらの結果は、AIエージェントが人間のチームに影響を与える対人的・心理的問題に免疫がないことを示唆している。
その結果、人間とAIのコラボレーションは本質的に人間と人間のコラボレーションよりも生産的あるいは効率的であるという仮定に挑戦し、AIの騙しパターンを理解するためのフレームワークを作成しました。
そうすることで、ビブコーディングに適用される品質計画、品質保証、品質管理に関する広範な研究が魅力的なものになります。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
AI技術は、科学的発見と意思決定において人間を支援することができるが、民主主義と個人を妨害することもある。
AIの責任ある使用と人間-AIチームへの参加は、AIアライメントの必要性をますます示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Measuring Human Contribution in AI-Assisted Content Generation [66.06040950325969]
本研究は,AIによるコンテンツ生成における人間の貢献度を測定する研究課題を提起する。
人間の入力とAI支援出力の自己情報に対する相互情報を計算することにより、コンテンツ生成における人間の比例情報貢献を定量化する。
論文 参考訳(メタデータ) (2024-08-27T05:56:04Z) - CREW: Facilitating Human-AI Teaming Research [3.7324091969140776]
我々は,リアルタイム意思決定シナリオにおける人間-AIコラボレーション研究を支援するプラットフォームCREWを紹介する。
これには、認知研究のための事前構築されたタスクや、モジュール設計から拡張可能なポテンシャルを備えたヒューマンAIコラボレーションが含まれます。
CREWは、最先端のアルゴリズムとよく訓練されたベースラインを使用して、リアルタイムの人間誘導型強化学習エージェントをベンチマークする。
論文 参考訳(メタデータ) (2024-07-31T21:43:55Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - Capturing Humans' Mental Models of AI: An Item Response Theory Approach [12.129622383429597]
我々は、AIエージェントのパフォーマンスが、他の人間のパフォーマンスよりも平均的にはるかに良いと期待していることを示します。
以上の結果から,AIエージェントの性能は他の人間よりも平均的に有意に向上することが示唆された。
論文 参考訳(メタデータ) (2023-05-15T23:17:26Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
本稿では,人間とロボットのコラボレーションにおいて,人間のようなコミュニケーションを実現するための新しい説明可能なAI(XAI)フレームワークを提案する。
ロボットは、人間のユーザの階層的なマインドモデルを構築し、コミュニケーションの一形態として自身のマインドの説明を生成する。
その結果,提案手法はロボットの協調動作性能とユーザ認識を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-07-24T23:35:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。