論文の概要: Automating the Deep Space Network Data Systems; A Case Study in Adaptive Anomaly Detection through Agentic AI
- arxiv url: http://arxiv.org/abs/2508.21111v1
- Date: Thu, 28 Aug 2025 17:12:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-01 19:45:10.834147
- Title: Automating the Deep Space Network Data Systems; A Case Study in Adaptive Anomaly Detection through Agentic AI
- Title(参考訳): 深宇宙ネットワークデータシステムの自動化 : エージェントAIによる適応型異常検出の事例研究
- Authors: Evan J. Chou, Lisa S. Locke, Harvey M. Soldan,
- Abstract要約: ディープ・スペース・ネットワーク(Deep Space Network、DSN)は、NASA最大のアンテナネットワークであり、大量の時系列データを生成する。
これらの施設には、長期にわたって劣化するDSNアンテナと送信機が含まれており、データフローにコストがかかる可能性がある。
本研究は,JPL技術者が収集したデータを用いて,異常や機器の劣化を直接特定できる様々な手法を実験することを目的とした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Deep Space Network (DSN) is NASA's largest network of antenna facilities that generate a large volume of multivariate time-series data. These facilities contain DSN antennas and transmitters that undergo degradation over long periods of time, which may cause costly disruptions to the data flow and threaten the earth-connection of dozens of spacecraft that rely on the Deep Space Network for their lifeline. The purpose of this study was to experiment with different methods that would be able to assist JPL engineers with directly pinpointing anomalies and equipment degradation through collected data, and continue conducting maintenance and operations of the DSN for future space missions around our universe. As such, we have researched various machine learning techniques that can fully reconstruct data through predictive analysis, and determine anomalous data entries within real-time datasets through statistical computations and thresholds. On top of the fully trained and tested machine learning models, we have also integrated the use of a reinforcement learning subsystem that classifies identified anomalies based on severity level and a Large Language Model that labels an explanation for each anomalous data entry, all of which can be improved and fine-tuned over time through human feedback/input. Specifically, for the DSN transmitters, we have also implemented a full data pipeline system that connects the data extraction, parsing, and processing workflow all together as there was no coherent program or script for performing these tasks before. Using this data pipeline system, we were able to then also connect the models trained from DSN antenna data, completing the data workflow for DSN anomaly detection. This was all wrapped around and further connected by an agentic AI system, where complex reasoning was utilized to determine the classifications and predictions of anomalous data.
- Abstract(参考訳): ディープ・スペース・ネットワーク(Deep Space Network、DSN)は、NASA最大のアンテナネットワークであり、多変量時系列データを生成する。
これらの施設には、長期にわたって劣化するDSNアンテナと送信機が含まれており、これはデータフローにコストがかかり、生命線としてディープ・スペース・ネットワークに依存する数十の宇宙船の地球接続を脅かす可能性がある。
本研究の目的は、JPL技術者が収集したデータを通じて異常や機器の劣化を直接特定し、宇宙空間における将来の宇宙ミッションのためのDSNの維持と運用を継続する様々な手法を実験することであった。
そこで我々は,予測分析によってデータを完全に再構築し,統計的計算としきい値を用いて,リアルタイムデータセット内の異常なデータエントリを判定する,さまざまな機械学習手法の研究を行った。
完全に訓練され、テストされた機械学習モデルに加えて、重大度レベルに基づいて識別された異常を分類する強化学習サブシステムと、各異常データ入力に関する説明をラベル付けする大規模言語モデルも統合されています。
具体的には,データ抽出,解析,処理のワークフローを接続する完全なデータパイプラインシステムも実装した。
このデータパイプラインシステムを使用して、DSNアンテナデータからトレーニングされたモデルを接続し、DSN異常検出のためのデータワークフローを完了しました。
複雑な推論を使用して異常データの分類と予測を判断するエージェントAIシステムによって、これらはすべてラップされ、さらに接続された。
関連論文リスト
- DeepHYDRA: Resource-Efficient Time-Series Anomaly Detection in Dynamically-Configured Systems [3.44012349879073]
我々はDeepHYDRA(Deep Hybrid DBSCAN/reduction-based Anomaly Detection)を提案する。
DBSCANと学習ベースの異常検出を組み合わせる。
大規模なデータセットと複雑なデータセットの両方において、異なるタイプの異常を確実に検出できることが示されている。
論文 参考訳(メタデータ) (2024-05-13T13:47:15Z) - A Comparison of Deep Learning Architectures for Spacecraft Anomaly Detection [0.138120109831448]
本研究では,宇宙船データの異常検出における各種ディープラーニングアーキテクチャの有効性を比較することを目的とする。
調査中のモデルには、畳み込みニューラルネットワーク(CNN)、リカレントニューラルネットワーク(RNN)、Long Short-Term Memory(LSTM)ネットワーク、Transformerベースのアーキテクチャなどがある。
論文 参考訳(メタデータ) (2024-03-19T16:08:27Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Anomaly Detection using Deep Autoencoders for in-situ Wastewater Systems
Monitoring Data [0.0]
本稿では, 深部自動エンコーダを用いた廃棄物システム監視データの異常検出手法を提案する。
そして、復号ステージの復元誤差に基づいて異常検出を行う。
論文 参考訳(メタデータ) (2020-02-07T09:53:46Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。