論文の概要: Fuzzy, Symbolic, and Contextual: Enhancing LLM Instruction via Cognitive Scaffolding
- arxiv url: http://arxiv.org/abs/2508.21204v1
- Date: Thu, 28 Aug 2025 20:46:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-01 19:45:10.871349
- Title: Fuzzy, Symbolic, and Contextual: Enhancing LLM Instruction via Cognitive Scaffolding
- Title(参考訳): ファジィ・シンボリック・コンテクスト:認知的共有によるLLM指導の強化
- Authors: Vanessa Figueiredo,
- Abstract要約: 本研究では,大規模言語モデル(LLM)の対話における認知行動に,アーキテクチャ的帰納バイアスがどのような影響を及ぼすかを検討する。
本稿では,ソクラテス学習における適応的構造的推論を促進するために,短期記憶スキーマと組み合わせたシンボリック・スキャフォールディング機構を提案する。
- 参考スコア(独自算出の注目度): 3.553493344868413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study how architectural inductive biases influence the cognitive behavior of large language models (LLMs) in instructional dialogue. We introduce a symbolic scaffolding mechanism paired with a short-term memory schema designed to promote adaptive, structured reasoning in Socratic tutoring. Using controlled ablation across five system variants, we evaluate model outputs via expert-designed rubrics covering scaffolding, responsiveness, symbolic reasoning, and conversational memory. We present preliminary results using an LLM-based evaluation framework aligned to a cognitively grounded rubric. This enables scalable, systematic comparisons across architectural variants in early-stage experimentation. The preliminary results show that our full system consistently outperforms baseline variants. Analysis reveals that removing memory or symbolic structure degrades key cognitive behaviors, including abstraction, adaptive probing, and conceptual continuity. These findings support a processing-level account in which architectural scaffolds can reliably shape emergent instructional strategies in LLMs.
- Abstract(参考訳): 本研究では,大規模言語モデル(LLM)の対話における認知行動に,アーキテクチャ的帰納バイアスがどのような影響を及ぼすかを検討する。
本稿では,ソクラテス学習における適応的構造的推論を促進するために,短期記憶スキーマと組み合わせたシンボリック・スキャフォールディング機構を提案する。
5種類のシステムに対して制御されたアブレーションを用いて,スキャフォールディング,応答性,シンボリック推論,会話記憶を含む,専門家が設計したルーリックを用いてモデル出力を評価する。
認知的接地されたルーリックに適合するLCMに基づく評価フレームワークを用いて,予備的な結果を示す。
これにより、アーリーステージの実験において、アーキテクチャの変種間でスケーラブルで体系的な比較が可能になる。
予備的な結果から、我々の全システムはベースラインの変種を一貫して上回っていることが分かる。
分析により、記憶や象徴構造を取り除くことは、抽象性、適応的探索、概念的連続性を含む重要な認知行動の低下を明らかにしている。
これらの知見は,LLMにおける創発的指導戦略を確実に形成可能な,処理レベルアカウントを支援する。
関連論文リスト
- AURORA: Augmented Understanding via Structured Reasoning and Reinforcement Learning for Reference Audio-Visual Segmentation [113.75682363364004]
AURORAは、参照音声視覚セグメント化における真の推論と言語理解を強化するために設計されたフレームワークである。
AURORAはRef-AVSベンチマークの最先端性能を達成し、非参照セグメンテーションに効果的に一般化する。
論文 参考訳(メタデータ) (2025-08-04T07:47:38Z) - How Metacognitive Architectures Remember Their Own Thoughts: A Systematic Review [16.35521789216079]
メタ認知は、人工エージェントの自律性と適応性を高める可能性に大きな注目を集めている。
既存の概要は、基礎となるアルゴリズム、表現、そしてそれぞれの成功に気付かない概念レベルに留まっている。
論文 参考訳(メタデータ) (2025-02-28T08:48:41Z) - LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
本稿では、類似推論のための制御された評価環境を導入することにより、探索的アプローチを採用する。
帰納的,帰納的,帰納的,帰納的な推論パイプラインの比較力学を解析する。
仮説選択や検証,洗練といった高度なパラダイムを考察し,論理的推論のスケールアップの可能性を明らかにする。
論文 参考訳(メタデータ) (2025-02-16T15:54:53Z) - A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs [3.2228025627337864]
本稿では,視覚言語モデル(VLM)における知覚推論インタフェースを識別するための構造化評価フレームワークを提案する。
本稿では,人間の問題解決戦略を反映した3つの評価パラダイムを提案する。
このフレームワークを適用したCAは、リッチで独立に生成された記述を推論するために強力な言語モデルを活用し、新しい最先端(SOTA)パフォーマンスを実現することを実証する。
論文 参考訳(メタデータ) (2025-01-23T12:42:42Z) - Unlocking Structured Thinking in Language Models with Cognitive Prompting [0.0]
大規模言語モデル(LLM)における問題解決を導く新しいアプローチとして認知的プロンプトを提案する。
本稿では,認知操作の決定論的シーケンス,自己適応型,ハイブリッド型という3つの変種を紹介する。
LLaMA, Gemma2, Qwenの各モデルの算術的推論ベンチマークGSM8Kにおける実験により、認知的プロンプトは標準的な質問応答に比べて性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2024-10-03T19:53:47Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - In-Memory Learning: A Declarative Learning Framework for Large Language
Models [56.62616975119192]
本研究では,人間ラベルデータに頼らずにエージェントが環境に整合できる新しい学習フレームワークを提案する。
このプロセス全体がメモリコンポーネント内で変換され、自然言語で実装される。
フレームワークの有効性を実証し、この問題に対する洞察を提供する。
論文 参考訳(メタデータ) (2024-03-05T08:25:11Z) - Provable Hierarchy-Based Meta-Reinforcement Learning [50.17896588738377]
HRLをメタRL設定で解析し、下流タスクで使用するメタトレーニング中に学習者が潜在階層構造を学習する。
我々は、この自然階層の標本効率の回復を保証し、抽出可能な楽観主義に基づくアルゴリズムとともに「多様性条件」を提供する。
我々の境界は、時間的・状態的・行動的抽象化などのHRL文献に共通する概念を取り入れており、我々の設定と分析が実際にHRLの重要な特徴を捉えていることを示唆している。
論文 参考訳(メタデータ) (2021-10-18T17:56:02Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。