論文の概要: Think in Games: Learning to Reason in Games via Reinforcement Learning with Large Language Models
- arxiv url: http://arxiv.org/abs/2508.21365v1
- Date: Fri, 29 Aug 2025 07:13:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-01 19:45:10.940007
- Title: Think in Games: Learning to Reason in Games via Reinforcement Learning with Large Language Models
- Title(参考訳): ゲームにおける思考:大規模言語モデルによる強化学習を通じてゲームにおける推論を学ぶ
- Authors: Yi Liao, Yu Gu, Yuan Sui, Zining Zhu, Yifan Lu, Guohua Tang, Zhongqian Sun, Wei Yang,
- Abstract要約: Think in Games (TiG) は、ゲーム環境と直接対話することで、手続き的理解を開発するために、大規模言語モデルに権限を与える新しいフレームワークである。
我々は,TiGが宣言的知識と手続き的知識のギャップを埋めることに成功したことを示す。
- 参考スコア(独自算出の注目度): 21.600469921661233
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) excel at complex reasoning tasks such as mathematics and coding, yet they frequently struggle with simple interactive tasks that young children perform effortlessly. This discrepancy highlights a critical gap between declarative knowledge (knowing about something) and procedural knowledge (knowing how to do something). Although traditional reinforcement learning (RL) agents can acquire procedural knowledge through environmental interaction, they often operate as black boxes and require substantial training data. In contrast, LLMs possess extensive world knowledge and reasoning capabilities, but are unable to effectively convert this static knowledge into dynamic decision-making in interactive settings. To address this challenge, we propose Think in Games (TiG), a novel framework that empowers LLMs to develop procedural understanding through direct interaction with game environments, while retaining their inherent reasoning and explanatory abilities. Specifically, TiG reformulates RL-based decision-making as a language modeling task: LLMs generate language-guided policies, which are refined iteratively through online reinforcement learning based on environmental feedback. Our experimental results show that TiG successfully bridges the gap between declarative and procedural knowledge, achieving competitive performance with dramatically lower data and computational demands compared to conventional RL methods. Moreover, TiG provides step-by-step natural language explanations for its decisions, greatly improving transparency and interpretability in complex interactive tasks.
- Abstract(参考訳): 大規模言語モデル(LLMs)は数学やコーディングといった複雑な推論タスクに優れるが、幼児が無力で実行する単純な対話的なタスクにしばしば苦労する。
この相違は、宣言的知識(何かについて知る)と手続き的知識(何かをする方法を知る)の間に重要なギャップを浮き彫りにする。
従来の強化学習(RL)エージェントは、環境相互作用を通じて手続き的な知識を取得することができるが、ブラックボックスとして機能し、かなりの訓練データを必要とすることが多い。
対照的に、LLMは広い世界知識と推論能力を持っているが、この静的知識をインタラクティブな環境での動的意思決定に効果的に変換することはできない。
この課題に対処するため,本研究では,ゲーム環境との直接的相互作用による手続き的理解を LLM に委ねる新たなフレームワークであるThink in Games (TiG) を提案する。
具体的には、TiGは言語モデリングタスクとしてRLに基づく意思決定を再構築する: LLMは、環境フィードバックに基づくオンライン強化学習を通じて反復的に洗練される言語誘導ポリシーを生成する。
実験の結果,TiGは宣言的知識と手続き的知識のギャップを埋めることに成功した。
さらにTiGは、その決定に対してステップバイステップの自然言語説明を提供し、複雑な対話的なタスクにおける透明性と解釈可能性を大幅に改善する。
関連論文リスト
- TRAIL: Joint Inference and Refinement of Knowledge Graphs with Large Language Models [5.678291291711662]
TRAILは思考、推論、インクリメンタルラーニングのための、新しく統合されたフレームワークである。
共同推論と動的KG精製を大きな言語モデルと組み合わせる。
複数のベンチマークでの大規模な実験により、TRAILは既存のKG拡張および検索拡張LDMベースラインを3%から13%上回った。
論文 参考訳(メタデータ) (2025-08-06T14:25:05Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを融合して、最小の外部入力で正確な推論を改善する新しい推論手法である。
GIVE は LLM エージェントをガイドして,最も関連する専門家データ (observe) を選択し,クエリ固有の発散思考 (reflect) に従事し,その情報を合成して最終的な出力 (speak) を生成する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Retrieval Meets Reasoning: Dynamic In-Context Editing for Long-Text Understanding [11.5386284281652]
動的インテキスト編集による情報検索を再現する新しい手法を提案する。
長大な文脈を拡張可能な外部知識として扱うことにより,本手法は対話的に関連情報を収集・統合する。
実験結果から,提案手法はコンテキスト限定LLMを効果的に活用し,マルチホップ推論に有効であることを示す。
論文 参考訳(メタデータ) (2024-06-18T06:54:28Z) - Reinforcement Learning Problem Solving with Large Language Models [0.0]
大規模言語モデル (LLM) には膨大な量の世界知識があり、自然言語処理 (NLP) タスクの性能向上のために様々な分野に応用できるようになっている。
これはまた、人間とAIシステム間の会話に基づく対話による、意図した問題を解決するための、よりアクセスしやすいパラダイムを促進する。
研究科学者」と「レガリー・マター・インテーク」の2つの詳細なケーススタディを通して、我々のアプローチの実践性を示す。
論文 参考訳(メタデータ) (2024-04-29T12:16:08Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
既成のLarge Language Models (LLM) の推論能力を高めるため, 単純で汎用的で効果的なプロンプト手法であるRe2を導入する。
CoT (Chain-of-Thought) など、ほとんどの思考を刺激する手法とは異なり、Re2 は質問を2回処理することで入力に焦点を移し、理解プロセスを強化する。
提案手法の有効性と汎用性を検証するため,14のデータセットにまたがる広範囲な推論ベンチマークでRe2を評価した。
論文 参考訳(メタデータ) (2023-09-12T14:36:23Z) - ChatABL: Abductive Learning via Natural Language Interaction with
ChatGPT [72.83383437501577]
大規模言語モデル(LLM)は、最近数学的な能力において大きな可能性を証明している。
LLMは現在、認識、言語理解、推論能力のブリッジングに困難を抱えている。
本稿では, LLMを帰納学習フレームワークに統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-04-21T16:23:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。