論文の概要: Maybe you don't need a U-Net: convolutional feature upsampling for materials micrograph segmentation
- arxiv url: http://arxiv.org/abs/2508.21529v1
- Date: Fri, 29 Aug 2025 11:37:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-01 19:45:11.022808
- Title: Maybe you don't need a U-Net: convolutional feature upsampling for materials micrograph segmentation
- Title(参考訳): U-Netは必要ないかもしれない:材料マイクログラフセグメンテーションのための畳み込み機能アップサンプリング
- Authors: Ronan Docherty, Antonis Vamvakeros, Samuel J. Cooper,
- Abstract要約: 我々は畳み込みニューラルネットワークを訓練し、入力画像を参照して低解像度(すなわち、大きなパッチサイズ)基盤モデルの特徴を増幅する。
これらの深い特徴と対話的なセグメンテーションによって、高品質なセグメンテーションはトレーニングよりもはるかに速く、ラベルもはるかに少ないことが示される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature foundation models - usually vision transformers - offer rich semantic descriptors of images, useful for downstream tasks such as (interactive) segmentation and object detection. For computational efficiency these descriptors are often patch-based, and so struggle to represent the fine features often present in micrographs; they also struggle with the large image sizes present in materials and biological image analysis. In this work, we train a convolutional neural network to upsample low-resolution (i.e, large patch size) foundation model features with reference to the input image. We apply this upsampler network (without any further training) to efficiently featurise and then segment a variety of microscopy images, including plant cells, a lithium-ion battery cathode and organic crystals. The richness of these upsampled features admits separation of hard to segment phases, like hairline cracks. We demonstrate that interactive segmentation with these deep features produces high-quality segmentations far faster and with far fewer labels than training or finetuning a more traditional convolutional network.
- Abstract(参考訳): 機能基盤モデル - 通常ビジョントランスフォーマー - は、画像のリッチなセマンティック記述子を提供し、(インタラクティブ)セグメンテーションやオブジェクト検出といった下流タスクに役立ちます。
計算効率の面では、これらの記述子はしばしばパッチベースであり、マイクログラフにしばしば見られる微細な特徴を表現するのに苦労する。
本研究では、畳み込みニューラルネットワークをトレーニングし、入力画像を参照して、低解像度(すなわち、大きなパッチサイズ)の基礎的特徴をアップサンプリングする。
植物細胞,リチウムイオン電池陰極,有機結晶など,様々な顕微鏡画像の分割を効率的に行うために,このアップサンプラーネットワークを適用した。
これらのアップサンプリングされた特徴の豊かさは、ヘアラインクラックのような、ハードからセグメントのフェーズの分離を許容する。
これらの深い特徴によるインタラクティブなセグメンテーションは、従来の畳み込みネットワークのトレーニングや微調整よりもはるかに高速で、ラベルが少ないことを実証する。
関連論文リスト
- TransResNet: Integrating the Strengths of ViTs and CNNs for High Resolution Medical Image Segmentation via Feature Grafting [6.987177704136503]
医用画像領域で高解像度画像が好ましいのは、基礎となる方法の診断能力を大幅に向上させるためである。
医用画像セグメンテーションのための既存のディープラーニング技術のほとんどは、空間次元が小さい入力画像に最適化されており、高解像度画像では不十分である。
我々はTransResNetという並列処理アーキテクチャを提案し、TransformerとCNNを並列的に組み合わせ、マルチ解像度画像から特徴を独立して抽出する。
論文 参考訳(メタデータ) (2024-10-01T18:22:34Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
オーバーセグメントニューロン間の接続を予測し,人間の作業量を削減することを目的としている。
最初はFlyTracingという名前のデータセットを構築しました。
本稿では,高密度なボリュームEM画像の埋め込みを生成するための,新しい接続性を考慮したコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-05T19:45:12Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - CEC-CNN: A Consecutive Expansion-Contraction Convolutional Network for
Very Small Resolution Medical Image Classification [0.8108972030676009]
深層・中層・浅層からのマルチスケール特徴を保存できる新しいCNNアーキテクチャを提案する。
膵管腺癌(PDAC)CTの超低解像度パッチのデータセットを用いて,我々のネットワークが最先端のアートモデルより優れていることを示す。
論文 参考訳(メタデータ) (2022-09-27T20:01:12Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Leveraging Image Complexity in Macro-Level Neural Network Design for
Medical Image Segmentation [3.974175960216864]
画像の複雑さは、与えられたデータセットに最適なものを選択するためのガイドラインとして利用できることを示す。
高複雑性データセットの場合、元のイメージ上で実行される浅いネットワークは、ダウンサンプリングされたイメージ上で実行されるディープネットワークよりもセグメンテーション結果が優れている可能性がある。
論文 参考訳(メタデータ) (2021-12-21T09:49:47Z) - Efficient Classification of Very Large Images with Tiny Objects [15.822654320750054]
Zoom-Inネットワークと呼ばれるエンドツーエンドCNNモデルを用いて,大容量画像を小さなオブジェクトで分類する。
本研究では,2つの大画像データセットと1ギガピクセルデータセットについて評価を行った。
論文 参考訳(メタデータ) (2021-06-04T20:13:04Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
畳み込みニューラルネットワーク(CNN)は、現代の3D医療画像セグメンテーションのデファクトスタンダードとなっている。
本稿では,bf畳み込みニューラルネットワークとbfトランスbf(cotr)を効率良く橋渡しし,正確な3次元医用画像分割を実現する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T13:34:22Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。