論文の概要: Trajectory learning for ensemble forecasts via the continuous ranked probability score: a Lorenz '96 case study
- arxiv url: http://arxiv.org/abs/2508.21664v1
- Date: Fri, 29 Aug 2025 14:25:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-01 19:45:11.077669
- Title: Trajectory learning for ensemble forecasts via the continuous ranked probability score: a Lorenz '96 case study
- Title(参考訳): 連続格付確率スコアによるアンサンブル予測のための軌道学習:Lorenz '96 ケーススタディ
- Authors: Sagy Ephrati, James Woodfield,
- Abstract要約: 本稿では,連続的ランク付け確率スコア(CRPS)を用いたアンサンブル予測における軌道学習の可能性を示す。
その結果、CRPSに基づく軌道学習は、正確かつ鋭いパラメトリゼーションを生み出すことが示唆された。
このアプローチは、短時間のリードタイムにおける正確性のために、データ同化アプリケーションに特に有望である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper demonstrates the feasibility of trajectory learning for ensemble forecasts by employing the continuous ranked probability score (CRPS) as a loss function. Using the two-scale Lorenz '96 system as a case study, we develop and train both additive and multiplicative stochastic parametrizations to generate ensemble predictions. Results indicate that CRPS-based trajectory learning produces parametrizations that are both accurate and sharp. The resulting parametrizations are straightforward to calibrate and outperform derivative-fitting-based parametrizations in short-term forecasts. This approach is particularly promising for data assimilation applications due to its accuracy over short lead times.
- Abstract(参考訳): 本稿では,連続的なランク付け確率スコア(CRPS)を損失関数として利用することにより,アンサンブル予測に対する軌道学習の実現可能性を示す。
2段階のLorenz '96システムをケーススタディとして,加法的および乗法的確率的パラメトリゼーションの開発と訓練を行い,アンサンブル予測を生成する。
その結果、CRPSに基づく軌道学習は、正確かつ鋭いパラメトリゼーションを生み出すことが示唆された。
結果として生じるパラメトリゼーションは、短期予測において微分適合に基づくパラメトリゼーションを校正し、より良くする。
このアプローチは、短時間のリードタイムにおける正確性のために、データ同化アプリケーションに特に有望である。
関連論文リスト
- Multiply Robust Conformal Risk Control with Coarsened Data [0.0]
コンフォーマル予測(CP)は近年,膨大な関心を集めている。
本稿では、粗いデータから得られる結果に対して、分布自由な有効予測領域を得るという一般的な問題について考察する。
半パラメトリック理論の原則的利用は、フレキシブルな機械学習手法の促進の鍵となる利点を持つ。
論文 参考訳(メタデータ) (2025-08-21T12:14:44Z) - Out-of-Sample Hydrocarbon Production Forecasting: Time Series Machine Learning using Productivity Index-Driven Features and Inductive Conformal Prediction [1.1534313664323632]
本研究は, アウトオブサンプル炭化水素生産予測の堅牢性を高めるために設計された新しいMLフレームワークを紹介する。
The Volve (wells PF14, PF12) and Norne (well E1H) oil field, this study is using the historical data from the Volve (wells PF14, PF12) and Norne (well E1H) oil field, we investigated the effective of various predictive algorithm。
論文 参考訳(メタデータ) (2025-08-12T19:14:46Z) - Enforcing tail calibration when training probabilistic forecast models [0.0]
本研究では,確率予測モデルの学習に使用する損失関数を用いて,極端な事象に対する予測の信頼性を向上させる方法について検討する。
我々は,最先端モデルが極端風速のキャリブレーション予測を発行しないことを示すとともに,モデルトレーニング中の損失関数への適切な適応により,極端事象のキャリブレーションを改善することができることを示した。
論文 参考訳(メタデータ) (2025-06-16T16:51:06Z) - Improving probabilistic forecasts of extreme wind speeds by training statistical post-processing models with weighted scoring rules [0.0]
閾値重み付き連続ランク確率スコア(twCRPS)を用いたトレーニングは、後処理モデルの極端なイベント性能を向上させる。
極端事象の確率論的予測の性能が向上し,分布物体の予測性能が低下する分布体テールトレードオフが発見された。
論文 参考訳(メタデータ) (2024-07-22T11:07:52Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Prediction intervals for neural network models using weighted asymmetric
loss functions [0.3093890460224435]
本稿では,近似および予測された傾向に対する予測区間(PI)を簡便かつ効率的に生成する手法を提案する。
本手法は、重み付き非対称損失関数を利用して、PIの上下境界を推定する。
パラメトリド関数のPIを導出するためにどのように拡張できるかを示し、深層ニューラルネットワークのトレーニングにおいてその有効性について議論する。
論文 参考訳(メタデータ) (2022-10-09T18:58:24Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。