論文の概要: Exploring the Efficacy of Convolutional Neural Networks in Sleep Apnea Detection from Single Channel EEG
- arxiv url: http://arxiv.org/abs/2509.00012v1
- Date: Sat, 16 Aug 2025 04:58:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-07 09:10:15.240297
- Title: Exploring the Efficacy of Convolutional Neural Networks in Sleep Apnea Detection from Single Channel EEG
- Title(参考訳): 単一チャネル脳波による睡眠時無呼吸検出における畳み込みニューラルネットワークの有効性の検討
- Authors: Chun Hin Siu, Hossein Miri,
- Abstract要約: 本稿では,単一チャネル脳波データに基づいて学習した畳み込みニューラルネットワーク(CNN)を用いた睡眠時無呼吸症候群の検出手法を提案する。
提案されたCNNの精度は85.1%、マシューズ相関係数(MCC)は0.22で、家庭ベースのアプリケーションにとって大きな可能性を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Sleep apnea, a prevalent sleep disorder, involves repeated episodes of breathing interruptions during sleep, leading to various health complications, including cognitive impairments, high blood pressure, heart disease, stroke, and even death. One of the main challenges in diagnosing and treating sleep apnea is identifying individuals at risk. The current gold standard for diagnosis, Polysomnography (PSG), is costly, labor intensive, and inconvenient, often resulting in poor quality sleep data. This paper presents a novel approach to the detection of sleep apnea using a Convolutional Neural Network (CNN) trained on single channel EEG data. The proposed CNN achieved an accuracy of 85.1% and a Matthews Correlation Coefficient (MCC) of 0.22, demonstrating a significant potential for home based applications by addressing the limitations of PSG in automated sleep apnea detection. Key contributions of this work also include the development of a comprehensive preprocessing pipeline with an Infinite Impulse Response (IIR) Butterworth filter, a dataset construction method providing broader temporal context, and the application of SMOTETomek to address class imbalance. This research underscores the feasibility of transitioning from traditional laboratory based diagnostics to more accessible, automated home based solutions, improving patient outcomes and broadening the accessibility of sleep disorder diagnostics.
- Abstract(参考訳): 睡眠時無呼吸症候群(Sleep apnea)は、睡眠中の呼吸中断を繰り返し、認知障害、高血圧、心臓病、脳卒中、そして死など様々な健康上の合併症を引き起こす。
睡眠時無呼吸症の診断と治療における主な課題の1つは、リスクのある個人を特定することである。
現在の診断基準であるPSG(Polysomnography)はコストが高く、労働集約的で不便で、質の悪い睡眠データをもたらすことが多い。
本稿では,単一チャネル脳波データに基づいて学習した畳み込みニューラルネットワーク(CNN)を用いた睡眠時無呼吸症候群の検出手法を提案する。
提案したCNNは85.1%の精度を達成し、マシューズ相関係数(MCC)は0.22で、自動睡眠時無呼吸検出におけるPSGの限界に対処することで家庭ベースのアプリケーションに有意な可能性を示した。
この研究の主な貢献は、Infinite Impulse Response (IIR) Butterworthフィルタによる包括的前処理パイプラインの開発、より広範な時間的コンテキストを提供するデータセット構築方法、SMOTETomekによるクラス不均衡への対処である。
本研究は、従来の検査基準による診断から、よりアクセシブルで自動化されたホームベースのソリューションへの移行可能性、患者結果の改善、睡眠障害診断のアクセシビリティ向上の可能性を明らかにするものである。
関連論文リスト
- MobileNetV2: A lightweight classification model for home-based sleep apnea screening [3.463585190363689]
本研究は、心電図(ECG)と呼吸信号から抽出した特徴を早期OSAスクリーニングに利用した、新しい軽量ニューラルネットワークモデルを提案する。
ECG信号は睡眠段階を予測するための特徴スペクトログラムを生成するのに使用され、呼吸信号は睡眠関連呼吸異常を検出するために用いられる。
これらの予測を統合することで、AHI(apnea-hypopnea index)を精度良く算出し、OSAの正確な診断を容易にする。
論文 参考訳(メタデータ) (2024-12-28T01:37:25Z) - An Attentive Dual-Encoder Framework Leveraging Multimodal Visual and Semantic Information for Automatic OSAHS Diagnosis [26.69518726864821]
閉塞型睡眠時無呼吸症候群(英語:obstructive sleep apnea-hypopnea syndrome、OSAHS)は、上気道閉塞による一般的な睡眠障害であり、酸素欠乏と睡眠障害を引き起こす。
顔画像解析を用いた既存のディープラーニング手法では、顔の特徴キャプチャが劣り、サンプルサイズが制限されていたため、精度が低かった。
自動OSAHS診断のための視覚入力と言語入力を統合したマルチモーダルデュアルエンコーダモデルを提案する。
論文 参考訳(メタデータ) (2024-12-25T14:42:17Z) - AIOSA: An approach to the automatic identification of obstructive sleep
apnea events based on deep learning [1.5381930379183162]
OSASは、死亡率の上昇、神経障害の悪化、リハビリテーション後の機能低下、高血圧の発症率の上昇と関連している。
OSAS診断のための金標準検査はPSG (Polysomnography) である。
生波形データの時間分解能を低減できる畳み込み型ディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-10T11:21:47Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
睡眠活動認識法は、被験者の睡眠覚醒サイクルを評価し、監視し、特徴づけ、行動の変化を検出する指標を提供することができる。
本稿では,スマートフォンから受動的に知覚されたデータを連続的に操作して,睡眠の特徴を識別し,重要な睡眠エピソードを識別する一般的な方法を提案する。
これらの装置は、その用途により、連続的で客観的で非侵襲的な方法で被験者の生体リズムをプロファイルするための優れた代替データ源となっている。
論文 参考訳(メタデータ) (2023-01-17T15:18:45Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
精神科患者の受動的活動監視は、リアルタイムでの行動変化を検出するために不可欠である。
睡眠行動認識は、患者の活動サイクルを表現する行動マーカーである。
スマートフォンから受動的に検出されたデータは、患者の生体リズムに優れた代替手段である。
論文 参考訳(メタデータ) (2022-11-08T17:29:40Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
睡眠障害は、世界中の主要な病気の1つです。
専門家が使用する基本的なツールはPolysomnogramで、睡眠中に記録された様々な信号の集合である。
専門家は、標準的なガイドラインの1つに従って異なる信号を採点する必要があります。
論文 参考訳(メタデータ) (2021-03-30T09:59:56Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
15秒未満の睡眠の短い断片は、マイクロスリープエピソード(MSEs)として定義される
覚醒検査(MWT)の維持は、警戒を評価するために臨床現場でしばしば用いられる。
MSEは、MSEを定義する確立された評価基準が欠如しているため、ほとんど考慮されていない。
入力として生の脳波とEOGデータに基づいて機械学習を用いてMSEを自動的に検出することを目的とした。
論文 参考訳(メタデータ) (2020-09-07T11:38:40Z) - Automate Obstructive Sleep Apnea Diagnosis Using Convolutional Neural
Networks [4.882119124419393]
本稿では,1次元畳み込み層とFCN層を有するCNNアーキテクチャについて述べる。
提案した1次元CNNモデルはPSG信号を手動で前処理することなく優れた分類結果が得られる。
論文 参考訳(メタデータ) (2020-06-13T15:35:18Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。