論文の概要: The Differential Meaning of Models: A Framework for Analyzing the Structural Consequences of Semantic Modeling Decisions
- arxiv url: http://arxiv.org/abs/2509.00248v1
- Date: Fri, 29 Aug 2025 21:28:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.143029
- Title: The Differential Meaning of Models: A Framework for Analyzing the Structural Consequences of Semantic Modeling Decisions
- Title(参考訳): モデルの差分的意味:意味モデリング決定の構造的結果を分析するためのフレームワーク
- Authors: Zachary K. Stine, James E. Deitrick,
- Abstract要約: 我々は、モデルが潜在記号幾何学を測り、記号的データセットの下のセミオティックエージェンシーの複合体に関する仮説として理解することができると論じる。
これはモデルセマンティクスの理論の基礎を形成し、モデルとそれらを構成するモデル決定は、それ自体が記号として扱われる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of methods for modeling of human meaning-making constitutes a powerful class of instruments for the analysis of complex semiotic systems. However, the field lacks a general theoretical framework for describing these modeling practices across various model types in an apples-to-apples way. In this paper, we propose such a framework grounded in the semiotic theory of C. S. Peirce. We argue that such models measure latent symbol geometries, which can be understood as hypotheses about the complex of semiotic agencies underlying a symbolic dataset. Further, we argue that in contexts where a model's value cannot be straightforwardly captured by proxy measures of performance, models can instead be understood relationally, so that the particular interpretive lens of a model becomes visible through its contrast with other models. This forms the basis of a theory of model semantics in which models, and the modeling decisions that constitute them, are themselves treated as signs. In addition to proposing the framework, we illustrate its empirical use with a few brief examples and consider foundational questions and future directions enabled by the framework.
- Abstract(参考訳): 人間の意味形成をモデル化する手法の増殖は、複雑な記号体系を解析するための強力な道具群を構成する。
しかし、この分野には、様々なモデルタイプにまたがるモデリングプラクティスを記述するための一般的な理論的枠組みが欠けている。
本稿では, C. S. Peirce のセミオティック理論に基づく枠組みを提案する。
このようなモデルは潜在記号幾何学を測るものであり、記号的データセットの下の半記号的エージェンシーの複合体に関する仮説として理解することができる。
さらに、性能のプロキシ測度によってモデルの値が直接キャプチャできない状況では、モデルの特定の解釈レンズが他のモデルと対比して見えるようになるように、モデルをリレーショナルに理解することができると論じる。
これはモデルセマンティクスの理論の基礎を形成し、モデルとそれらを構成するモデル決定は、それ自体が記号として扱われる。
フレームワークの提案に加えて、いくつかの簡単な例でその経験的利用を説明し、フレームワークによって実現される基本的な質問や今後の方向性について考察する。
関連論文リスト
- Modeling Open-World Cognition as On-Demand Synthesis of Probabilistic Models [93.1043186636177]
我々は、人々が分散表現と象徴表現の組み合わせを使って、新しい状況に合わせた見知らぬ精神モデルを構築するという仮説を探求する。
モデル合成アーキテクチャ」という概念の計算的実装を提案する。
我々は、新しい推論データセットに基づく人間の判断のモデルとして、MSAを評価した。
論文 参考訳(メタデータ) (2025-07-16T18:01:03Z) - The CoT Encyclopedia: Analyzing, Predicting, and Controlling how a Reasoning Model will Think [81.38614558541772]
本稿では,モデル推論の分析とステアリングのためのフレームワークであるCoT Encyclopediaを紹介する。
本手法はモデル生成CoTから多種多様な推論基準を自動的に抽出する。
このフレームワークは既存の手法よりも解釈可能で包括的分析が可能であることを示す。
論文 参考訳(メタデータ) (2025-05-15T11:31:02Z) - Towards Compositional Interpretability for XAI [3.3768167170511587]
本稿では,カテゴリ理論に基づくAIモデルとその解釈可能性の定義手法を提案する。
我々は、幅広いAIモデルを構成モデルと比較する。
標準の'本質的に解釈可能な'モデルを作るものは、最も明確に図式化されます。
論文 参考訳(メタデータ) (2024-06-25T14:27:03Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
自然の高次元データから学習する概念は、ヒューマンアライメントと解釈可能な機械学習モデルの構築の可能性を秘めている。
我々は概念を階層的因果モデルを通して関連付けられた離散潜在因果変数として定式化する。
我々は、理論的な主張を合成データ実験で裏付ける。
論文 参考訳(メタデータ) (2024-06-01T18:01:03Z) - Incorporating Domain Knowledge in Deep Neural Networks for Discrete
Choice Models [0.5801044612920815]
本稿では,DCMにおけるデータ駆動型アプローチの可能性を拡張するフレームワークを提案する。
これには、必要な関係を表す擬似データサンプルと、その実現度を測定する損失関数が含まれる。
ケーススタディは、このフレームワークの個別選択分析の可能性を示している。
論文 参考訳(メタデータ) (2023-05-30T12:53:55Z) - Minimal Value-Equivalent Partial Models for Scalable and Robust Planning
in Lifelong Reinforcement Learning [56.50123642237106]
モデルに基づく強化学習における一般的な実践は、エージェントの環境のあらゆる側面をモデル化するモデルを学ぶことである。
このようなモデルは、生涯にわたる強化学習シナリオにおいて、スケーラブルで堅牢な計画を実行するのに特に適していない、と我々は主張する。
我々は,「最小値部分モデル」と呼ぶ,環境の関連する側面のみをモデル化する新しい種類のモデルを提案する。
論文 参考訳(メタデータ) (2023-01-24T16:40:01Z) - Geometric and Topological Inference for Deep Representations of Complex
Networks [13.173307471333619]
我々は、トポロジと表現の幾何学を強調する統計のクラスを提示する。
モデル選択に使用する場合の感度と特異性の観点から,これらの統計値を評価する。
これらの新しい手法により、脳やコンピューター科学者は、脳やモデルによって学習された動的表現変換を可視化することができる。
論文 参考訳(メタデータ) (2022-03-10T17:14:14Z) - An Ample Approach to Data and Modeling [1.0152838128195467]
さまざまな分野の概念とメソッドを統合するモデルの構築方法をモデル化するためのフレームワークについて説明する。
参照M*メタモデルフレームワークは、厳密な同値関係の観点からデータセットと各モデルの関連付けに批判的に依存する。
開発されたフレームワークがデータクラスタリング、複雑性、共同研究、ディープラーニング、クリエイティビティに関する洞察を提供する方法について、いくつかの考察がなされている。
論文 参考訳(メタデータ) (2021-10-05T01:26:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。