論文の概要: Towards Adaptive Visual Token Pruning for Large Multimodal Models
- arxiv url: http://arxiv.org/abs/2509.00320v1
- Date: Sat, 30 Aug 2025 02:43:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.176196
- Title: Towards Adaptive Visual Token Pruning for Large Multimodal Models
- Title(参考訳): 大規模マルチモーダルモデルに対する適応的視覚トーンプルーニングに向けて
- Authors: Hao Zhang, Mengsi Lyu, Chenrui He, Yulong Ao, Yonghua Lin,
- Abstract要約: テキストトークンと意味的に視覚トークンを除去する相互情報に基づくトークンプルーニング戦略を導入する。
LLaVA-15-7BやLLaVA-7Bといったモデルでは,テキストトークンを88.9%削減しながら高い性能を維持している。
- 参考スコア(独自算出の注目度): 4.779482139419908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Multimodal Models (LMMs) have achieved significant success across various tasks. These models usually encode visual inputs into dense token sequences, which are then concatenated with textual tokens and jointly processed by a language model. However, the increased token count substantially raises computational and memory costs during inference. Token pruning has emerged as a promising approach to address this issue. Existing token pruning methods often rely on costly calibration or suboptimal importance metrics, leading to redundant retained tokens. In this paper, we analyze the redundancy differences between visual and textual tokens and propose pruning exclusively on visual tokens. Based on this, we propose a visual token pruning strategy that explicitly preserves both cross-modal alignment and intra-modal informational diversity. We introduce a mutual information-based token pruning strategy that removes visual tokens semantically misaligned with textual tokens, effectively preserving the alignment between the visual and textual modalities. To further improve the representational quality of the retained tokens, we additionally prune redundant visual tokens by maximizing the expected pairwise distances in the embedding space, which is solved efficiently with a greedy algorithm. Extensive experiments demonstrate that our method maintains strong performance while reducing tokens by 88.9% on models such as LLaVA-1.5-7B and LLaVA-NEXT-7B, resulting in a 56.7% improvement in inference speed.
- Abstract(参考訳): 大規模マルチモーダルモデル(LMM)は様々なタスクで大きな成功を収めた。
これらのモデルは通常、視覚入力を高密度なトークンシーケンスにエンコードし、それをテキストトークンと連結し、言語モデルによって共同で処理する。
しかし、トークン数の増加は、推論中の計算コストとメモリコストを大幅に上昇させる。
Token pruningはこの問題に対処するための有望なアプローチとして登場した。
既存のトークンプルーニング手法は、しばしばコストのかかるキャリブレーションや、最適以下の重要なメトリクスに依存しており、冗長なトークンの保持につながる。
本稿では,視覚的トークンとテキストトークンの冗長性の違いを分析し,視覚的トークンのみに限定してプルーニングを提案する。
そこで本研究では,モーダル間アライメントとモーダル内情報多様性の両方を明示的に保持する視覚的トークンプルーニング戦略を提案する。
本稿では,視覚的トークンとテキスト的トークンを意味的に不一致に除去し,視覚的トークンとテキスト的モダリティの整合性を効果的に維持する相互情報に基づくトークンプルーニング戦略を提案する。
留置されたトークンの表現品質をさらに向上するために,組込み空間における期待対距離を最大化することにより,冗長な視覚トークンを創出する。
その結果, LLaVA-1.5-7B や LLaVA-NEXT-7B などのモデルではトークンを88.9%削減し, 推論速度は56.7%向上した。
関連論文リスト
- CoViPAL: Layer-wise Contextualized Visual Token Pruning for Large Vision-Language Models [75.88232735646018]
LVLM(Large Vision-Language Models)は、画像やビデオから抽出されたテキストトークンとビジョントークンからなるマルチモーダル入力を処理する。
既存の手法は冗長な視覚トークンを創りだそうとしており、視覚表現のかなりの冗長性を明らかにしている。
我々は,LVLMで処理される前に冗長な視覚トークンを予測・削除するために,Plug-and-Play Pruning Module (PPM) を用いるレイヤワイズなコンテキスト対応型視覚トークンプルーニング手法であるCoViPALを提案する。
論文 参考訳(メタデータ) (2025-08-24T07:47:00Z) - VFlowOpt: A Token Pruning Framework for LMMs with Visual Information Flow-Guided Optimization [49.5501769221435]
LMM(Large Multimodal Models)は、多数の視覚トークンを微粒な視覚情報に活用することにより、視覚言語タスクに優れる。
推論中の視覚トークンを減らすことを目的とした以前の研究は、一般的に、視覚のみのトークンや視覚言語トークンの注意スコアから得られた重要マップを利用して、1つまたは複数のプルーニング段階にわたってトークンをプルーンする。
重要地図導出プロセスとリサイクル機構を備えたプログレッシブプルーニングモジュールを導入したトークンプルーニングフレームワークであるVFlowOptを提案する。
実験により、VFlowOptは、同等のパフォーマンスを維持しながら、90%のビジュアルトークンをプルークでき、KVキャッシュメモリが89%削減され、3.8になった。
論文 参考訳(メタデータ) (2025-08-07T09:47:21Z) - Rethinking Visual Token Reduction in LVLMs under Cross-modal Misalignment [38.04426918886084]
視覚言語モデル(LVLM)は、視覚入力をパッチレベルのトークンの密度の高いシーケンスとしてエンコードし、微細なセマンティクスをキャプチャする。
これまでは、大型言語モデル(LLM)の前か中のいずれかで、視覚トークンの削減を検討してきた。
トレーニングフリーで視覚のみのプルーニングフレームワークであるVisionDropを導入し、モーダル内(視覚から視覚への)注目に基づいて情報的視覚トークンを選択する。
論文 参考訳(メタデータ) (2025-06-27T14:55:40Z) - ToDRE: Visual Token Pruning via Diversity and Task Awareness for Efficient Large Vision-Language Models [59.47738955960352]
ToDREは、2段階でトレーニング不要なトークン圧縮フレームワークである。
トークンの多様性とトークン-タスク関連性に基づいてトークンをプルーニングすることで、優れたパフォーマンスを実現する。
論文 参考訳(メタデータ) (2025-05-24T15:47:49Z) - TopV: Compatible Token Pruning with Inference Time Optimization for Fast and Low-Memory Multimodal Vision Language Model [56.43860351559185]
高速かつ低メモリの textbfVLM に対する推論時間最適化を備えた textbfToken textbfPruning の互換性である textbfTopV を導入する。
我々のフレームワークは、各ソースの視覚的トークンの重要性を測定するために、視覚的なコスト関数を組み込んでおり、低重要トークンの効果的なプルーニングを可能にしている。
論文 参考訳(メタデータ) (2025-03-24T01:47:26Z) - Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters [54.01228554126122]
視覚言語モデル(VLM)は、様々な視覚的理解と推論タスクにまたがる強力な能力を示している。
推論コストを削減するために、LLM(Large Language Models)を縮小するか、イメージを表すのに必要な入力トークンの数を削減できる。
高速圧縮に適したトークン圧縮アルゴリズムを設計する第一歩を踏み出す。
論文 参考訳(メタデータ) (2024-11-05T18:54:21Z) - LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models [35.88374542519597]
大規模マルチモーダルモデル(LMM)は、視覚エンコーダと大きな言語モデルとを接続することで、視覚的推論能力を示す。
近年のLMMには、高解像度の画像やビデオなど、より複雑な視覚入力が組み込まれており、視覚トークンの数が大幅に増加する。
我々は,LMMの性能を損なうことなく,視覚トークンの数を著しく削減する適応型視覚トークン削減戦略であるPruMergeを提案する。
論文 参考訳(メタデータ) (2024-03-22T17:59:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。