論文の概要: AutoDrive-R$^2$: Incentivizing Reasoning and Self-Reflection Capacity for VLA Model in Autonomous Driving
- arxiv url: http://arxiv.org/abs/2509.01944v1
- Date: Tue, 02 Sep 2025 04:32:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.904463
- Title: AutoDrive-R$^2$: Incentivizing Reasoning and Self-Reflection Capacity for VLA Model in Autonomous Driving
- Title(参考訳): オートドライブ-R$^2$:自律運転におけるVLAモデルに対する推論と自己回帰能力のインセンティブ化
- Authors: Zhenlong Yuan, Jing Tang, Jinguo Luo, Rui Chen, Chengxuan Qian, Lei Sun, Xiangxiang Chu, Yujun Cai, Dapeng Zhang, Shuo Li,
- Abstract要約: 本稿では,自律運転システムの推論能力と自己回帰能力を両立させる新しいVLAフレームワークであるAutoDrive-R$2$を提案する。
まず,教師付き微調整のための新しいCoTデータセット nuScenesR$2$-6K を提案する。
次に, グループ相対政策最適化(GRPO)アルゴリズムを用いて, 信頼性の高い滑らかさと現実的な軌道計画を実現する。
- 参考スコア(独自算出の注目度): 37.260140808367716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-Language-Action (VLA) models in autonomous driving systems have recently demonstrated transformative potential by integrating multimodal perception with decision-making capabilities. However, the interpretability and coherence of the decision process and the plausibility of action sequences remain largely underexplored. To address these issues, we propose AutoDrive-R$^2$, a novel VLA framework that enhances both reasoning and self-reflection capabilities of autonomous driving systems through chain-of-thought (CoT) processing and reinforcement learning (RL). Specifically, we first propose an innovative CoT dataset named nuScenesR$^2$-6K for supervised fine-tuning, which effectively builds cognitive bridges between input information and output trajectories through a four-step logical chain with self-reflection for validation. Moreover, to maximize both reasoning and self-reflection during the RL stage, we further employ the Group Relative Policy Optimization (GRPO) algorithm within a physics-grounded reward framework that incorporates spatial alignment, vehicle dynamic, and temporal smoothness criteria to ensure reliable and realistic trajectory planning. Extensive evaluation results across both nuScenes and Waymo datasets demonstrates the state-of-the-art performance and robust generalization capacity of our proposed method.
- Abstract(参考訳): 自律運転システムにおけるVLA(Vision-Language-Action)モデルでは,マルチモーダル認識と意思決定機能を統合することで,近年,トランスフォーメーションの可能性を実証している。
しかし, 決定過程の解釈可能性や一貫性, 行動系列の妥当性は未解明のままである。
これらの問題に対処するため、我々は、チェーン・オブ・シント(CoT)処理と強化学習(RL)を通して自律運転システムの推論能力と自己回帰能力を両立させる新しいVLAフレームワークであるAutoDrive-R$^2$を提案する。
具体的には、まず、教師付き微調整のためのnuScenesR$^2$6Kという革新的なCoTデータセットを提案する。
さらに、RL段階における推論と自己回帰の両面を最大化するために、空間的アライメント、車両動力学的、時間的滑らか性基準を組み込んだ物理学的な報酬枠組みにおいて、グループ相対政策最適化(GRPO)アルゴリズムを用いて信頼性と現実的な軌道計画を行う。
nuScenes と Waymo のデータセットにまたがる広範囲な評価結果は,提案手法の最先端性能と堅牢な一般化能力を示すものである。
関連論文リスト
- ImagiDrive: A Unified Imagination-and-Planning Framework for Autonomous Driving [64.12414815634847]
ビジョン・ランゲージ・モデル(VLM)とドライビング・ワールド・モデル(DWM)は、この課題のさまざまな側面に対処する強力なレシピとして独立して登場した。
我々は、VLMベースの運転エージェントとDWMベースのシーン想像装置を統合した、新しいエンドツーエンドの自動運転フレームワークであるImagiDriveを提案する。
論文 参考訳(メタデータ) (2025-08-15T12:06:55Z) - SOLVE: Synergy of Language-Vision and End-to-End Networks for Autonomous Driving [51.47621083057114]
SOLVEは、ビジョンランゲージモデルとエンド・ツー・エンド(E2E)モデルを相乗化して自動運転車の計画を強化する革新的なフレームワークである。
提案手法は,VLMとE2Eコンポーネント間の包括的インタラクションを実現するために,共有ビジュアルエンコーダによる機能レベルでの知識共有を重視している。
論文 参考訳(メタデータ) (2025-05-22T15:44:30Z) - RAD: Retrieval-Augmented Decision-Making of Meta-Actions with Vision-Language Models in Autonomous Driving [10.984203470464687]
視覚言語モデル(VLM)は、空間認識の不十分さや幻覚といった限界に悩まされることが多い。
本稿では,自律走行シーンにおけるメタアクションを確実に生成するVLMの能力を高めるための,検索強化意思決定(RAD)フレームワークを提案する。
我々は,NuScenesデータセットから得られたデータセットに基づいてVLMを微調整し,その空間的知覚と鳥眼視画像理解能力を高める。
論文 参考訳(メタデータ) (2025-03-18T03:25:57Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Driveは、Teacher LLMを統合して、注意に基づく学生DRLポリシーをガイドするハイブリッドフレームワークである。
自己維持機構はDRLエージェントの探索とこれらの戦略を融合させ、政策収束を加速し、堅牢性を高める。
論文 参考訳(メタデータ) (2025-02-03T14:22:03Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesとBench2Driveデータセットで実施された実験は、DiFSDの優れた計画性能と優れた効率を実証している。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - Reason2Drive: Towards Interpretable and Chain-based Reasoning for Autonomous Driving [38.28159034562901]
Reason2Driveは600万以上のビデオテキストペアを備えたベンチマークデータセットである。
我々は、自律運転プロセスが知覚、予測、推論ステップの逐次的な組み合わせであると特徴付けている。
本稿では,自律システムにおける連鎖型推論性能を評価するための新しい集計評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-06T18:32:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。