論文の概要: GridMind: LLMs-Powered Agents for Power System Analysis and Operations
- arxiv url: http://arxiv.org/abs/2509.02494v1
- Date: Tue, 02 Sep 2025 16:42:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:04.109643
- Title: GridMind: LLMs-Powered Agents for Power System Analysis and Operations
- Title(参考訳): GridMind: LLMによる電力系統解析・運用のためのエージェント
- Authors: Hongwei Jin, Kibaek Kim, Jonghwan Kwon,
- Abstract要約: 本稿では,大規模言語モデル(LLM)を決定論的工学的解法と統合し,対話型科学計算による電力系統解析を実現する多エージェントAIシステムを提案する。
GridMindはワークフローの統合、知識アクセシビリティ、コンテキスト保存、専門家による意思決定支援強化に対処する。
この研究は、エージェントAIを科学計算の実行可能なパラダイムとして確立し、会話インターフェースがアクセシビリティを向上し、重要なエンジニアリングアプリケーションに不可欠な数値的な厳密さを保っていることを実証する。
- 参考スコア(独自算出の注目度): 3.7568206336846663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The complexity of traditional power system analysis workflows presents significant barriers to efficient decision-making in modern electric grids. This paper presents GridMind, a multi-agent AI system that integrates Large Language Models (LLMs) with deterministic engineering solvers to enable conversational scientific computing for power system analysis. The system employs specialized agents coordinating AC Optimal Power Flow and N-1 contingency analysis through natural language interfaces while maintaining numerical precision via function calls. GridMind addresses workflow integration, knowledge accessibility, context preservation, and expert decision-support augmentation. Experimental evaluation on IEEE test cases demonstrates that the proposed agentic framework consistently delivers correct solutions across all tested language models, with smaller LLMs achieving comparable analytical accuracy with reduced computational latency. This work establishes agentic AI as a viable paradigm for scientific computing, demonstrating how conversational interfaces can enhance accessibility while preserving numerical rigor essential for critical engineering applications.
- Abstract(参考訳): 従来の電力系統分析ワークフローの複雑さは、現代の電力網における効率的な意思決定に重大な障壁をもたらす。
本稿では,Large Language Models(LLM)と決定論的工学的解法を統合する多エージェントAIシステムであるGridMindについて述べる。
このシステムは,関数呼び出しによる数値精度を維持しつつ,自然言語インタフェースによるAC Optimal Power FlowとN-1整合解析を協調する特殊エージェントを用いる。
GridMindはワークフローの統合、知識アクセシビリティ、コンテキスト保存、専門家による意思決定支援強化に対処する。
IEEEテストケースでの実験的評価では、提案するエージェントフレームワークは、全てのテストされた言語モデルに対して一貫して正しいソリューションを提供し、より小さなLSMは計算遅延を低減し、同等な分析精度を達成している。
この研究は、エージェントAIを科学計算の実行可能なパラダイムとして確立し、会話インターフェイスがアクセシビリティを向上し、重要なエンジニアリングアプリケーションに不可欠な数値的な厳密さを保っていることを実証する。
関連論文リスト
- Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [58.50944604905037]
エッジクラウドコラボレーティブコンピューティング(ECCC)は、現代のインテリジェントアプリケーションの計算要求に対処するための重要なパラダイムとして登場した。
AIの最近の進歩、特にディープラーニングと大規模言語モデル(LLM)は、これらの分散システムの能力を劇的に向上させてきた。
この調査は、基本的なアーキテクチャ、技術の実現、新しいアプリケーションに関する構造化されたチュートリアルを提供する。
論文 参考訳(メタデータ) (2025-05-03T13:55:38Z) - A Theoretical Framework for Prompt Engineering: Approximating Smooth Functions with Transformer Prompts [33.284445296875916]
本稿では, トランスフォーマーモデルに, 慎重に設計したプロンプトを付与することで, 計算システムとして機能できることを実証する公式なフレームワークを提案する。
我々は、$beta$-timesの微分可能関数に対する近似理論を確立し、適切に構造化されたプロンプトで導かれるとき、変換器が任意の精度でそのような関数を近似できることを証明した。
我々の発見は、自律的な推論と問題解決の可能性を強調し、エンジニアリングとAIエージェント設計のより堅牢で理論的に根ざした進歩の道を開いた。
論文 参考訳(メタデータ) (2025-03-26T13:58:02Z) - Leveraging Conversational Generative AI for Anomaly Detection in Digital Substations [0.0]
提案したADフレームワークとHITLベースのADフレームワークの比較評価を行うために,高度なパフォーマンス指標を採用している。
このアプローチは、サイバーセキュリティの課題が進展する中で、電力系統運用の信頼性を高めるための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-11-09T18:38:35Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [49.362750475706235]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - MechAgents: Large language model multi-agent collaborations can solve
mechanics problems, generate new data, and integrate knowledge [0.6708125191843434]
ここでは、自律的なコラボレーションを通じて、弾力性に関する問題を実証する。
2エージェントチームは、古典的な弾性問題を解くために有限要素法を適用するために、効果的にコードを書き、実行し、自己修正することができる。
より複雑なタスクのために、我々は計画、定式化、コーディング、実行、プロセスと結果を批判する作業の分割を強化したより大きなエージェントグループを構築します。
論文 参考訳(メタデータ) (2023-11-14T13:49:03Z) - Energy-frugal and Interpretable AI Hardware Design using Learning
Automata [5.514795777097036]
Tsetlin Machineと呼ばれる新しい機械学習アルゴリズムが提案されている。
本稿では,エネルギーフルーガルな人工知能ハードウェア設計手法について検討する。
本研究は, 資源配分が, 頑健かつ解釈可能な学習を達成しつつ, 決定的なエネルギー削減をもたらすことを示す。
論文 参考訳(メタデータ) (2023-05-19T15:11:18Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
限定データによる微分方程式の解法として,注目型数値解法(AttNS)を提案する。
AttNSは、モデル一般化とロバスト性の向上におけるResidual Neural Networks(ResNet)のアテンションモジュールの効果にインスパイアされている。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。