論文の概要: Unlearning That Lasts: Utility-Preserving, Robust, and Almost Irreversible Forgetting in LLMs
- arxiv url: http://arxiv.org/abs/2509.02820v1
- Date: Tue, 02 Sep 2025 20:38:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 21:40:46.337525
- Title: Unlearning That Lasts: Utility-Preserving, Robust, and Almost Irreversible Forgetting in LLMs
- Title(参考訳): 長続きする未学習: LLMにおけるユーティリティ保存、ロバスト、ほぼ不可逆的な予測
- Authors: Naman Deep Singh, Maximilian Müller, Francesco Croce, Matthias Hein,
- Abstract要約: 大規模言語モデル(LLM)におけるアンラーニングでは、事前訓練されたモデルから特定の情報を正確に除去する。
これは、事前訓練中に取得した個人データや有害な知識を削除することで、LLMの安全性を確保するために重要である。
JensUnを導入し、Jensen-Shannon Divergenceをセットを忘れたり、保持したりするためのトレーニングの目的として活用する。
大規模な実験では、JensUnは競合するメソッドよりも忘れやすいトレードオフを実現し、再学習に強いレジリエンスを示しています。
- 参考スコア(独自算出の注目度): 31.768387661474904
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unlearning in large language models (LLMs) involves precisely removing specific information from a pre-trained model. This is crucial to ensure safety of LLMs by deleting private data or harmful knowledge acquired during pre-training. However, existing unlearning methods often fall short when subjected to thorough evaluation. To overcome this, we introduce JensUn, where we leverage the Jensen-Shannon Divergence as the training objective for both forget and retain sets for more stable and effective unlearning dynamics compared to commonly used loss functions. In extensive experiments, JensUn achieves better forget-utility trade-off than competing methods, and even demonstrates strong resilience to benign relearning. Additionally, for a precise unlearning evaluation, we introduce LKF, a curated dataset of lesser-known facts that provides a realistic unlearning scenario. Finally, to comprehensively test unlearning methods, we propose (i) employing an LLM as semantic judge instead of the standard ROUGE score, and (ii) using worst-case unlearning evaluation over various paraphrases and input formats. Our improved evaluation framework reveals that many existing methods are less effective than previously thought.
- Abstract(参考訳): 大規模言語モデル(LLM)におけるアンラーニングでは、事前訓練されたモデルから特定の情報を正確に除去する。
これは、事前訓練中に取得した個人データや有害な知識を削除することで、LLMの安全性を確保するために重要である。
しかし、既存の未学習の手法は、徹底的な評価を受けると、しばしば不足する。
本稿では,Jensen-Shannon Divergenceを,一般的な損失関数と比較して,より安定かつ効果的な非学習ダイナミクスのための集合を忘れ,保持するためのトレーニング目的として活用するJensUnを紹介する。
大規模な実験では、JensUnは競合するメソッドよりも忘れやすいトレードオフを実現し、再学習に強いレジリエンスを示しています。
さらに、正確な未学習評価のために、現実的な未学習シナリオを提供する、あまり知られていない事実のキュレートデータセットであるLKFを紹介する。
最後に、未学習の手法を包括的にテストするために、我々は提案する。
一 標準ROUGEスコアの代わりにLLMを意味判断として使用すること。
(II) 様々な言い回しや入力形式に対する最悪の未学習評価を用いた。
評価フレームワークの改善により,既存の手法の多くは従来考えられていたよりも効果が低いことが明らかとなった。
関連論文リスト
- Erasing Without Remembering: Implicit Knowledge Forgetting in Large Language Models [70.78205685001168]
我々は,その一般化に着目して,大規模言語モデルにおける知識の忘れについて検討する。
UGBenchは、スコープ内暗黙の知識の未学習を評価するために特別に設計された最初のベンチマークである。
確率に基づく新しいアンラーニングパラダイムであるPerMUを提案する。
論文 参考訳(メタデータ) (2025-02-27T11:03:33Z) - ReLearn: Unlearning via Learning for Large Language Models [64.2802606302194]
本研究では、効果的なアンラーニングのためのデータ拡張および微調整パイプラインであるReLearnを提案する。
このフレームワークでは、知識レベルの保存を測定するために、知識獲得率(KFR)と知識保持率(KRR)を導入している。
実験の結果,ReLearnは高品質な出力を保ちながら,目標とするリセットを実現することができた。
論文 参考訳(メタデータ) (2025-02-16T16:31:00Z) - Does Unlearning Truly Unlearn? A Black Box Evaluation of LLM Unlearning Methods [1.9799527196428242]
大規模言語モデルアンラーニングは、LLMが悪意ある目的のために使用するのを防ぐために学んだ有害な情報を除去することを目的としている。
アンラーニングが一般的なモデル能力に顕著な影響を与えていることを示す。
簡単な方法で5ショットのプロンプトやリフレーズを行うことで、未学習ベンチマークの精度が10倍以上に向上する可能性があることを示す。
論文 参考訳(メタデータ) (2024-11-18T22:31:17Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.40798352740857]
3つのコアコンポーネントで構成されるICU(Iterative Contrastive Unlearning)フレームワークを紹介する。
知識未学習誘導モジュールは、未学習の損失を使用して、特定の知識を除去するためにターゲットとする。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を保持する。
イテレーティブ・アンラーニング・リファインメントモジュールは、進行中の評価と更新を通じて、アンラーニングプロセスを動的に調整する。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
本稿では,大規模言語モデルにおける機械学習評価の精度向上を図る。
評価指標の堅牢性と、競合する目標間のトレードオフという、2つの重要な課題に対処します。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。