論文の概要: Multi-Scale Deep Learning for Colon Histopathology: A Hybrid Graph-Transformer Approach
- arxiv url: http://arxiv.org/abs/2509.02851v1
- Date: Tue, 02 Sep 2025 21:40:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 21:40:46.348658
- Title: Multi-Scale Deep Learning for Colon Histopathology: A Hybrid Graph-Transformer Approach
- Title(参考訳): 大腸病理組織学のためのマルチスケール深層学習 : グラフ変換器のハイブリッドアプローチ
- Authors: Sadra Saremi, Amirhossein Ahmadkhan Kordbacheh,
- Abstract要約: 大腸癌としても知られる大腸がんは、世界で最も悪性ながんの1つである。
本研究では, カプセルネットワーク, グラフアテンション機構, トランスフォーマーモジュール, 残留学習を併用し, 大腸癌の分類を推し進めるハイブリッドマルチスケールディープラーニングアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Colon cancer also known as Colorectal cancer, is one of the most malignant types of cancer worldwide. Early-stage detection of colon cancer is highly crucial to prevent its deterioration. This research presents a hybrid multi-scale deep learning architecture that synergizes capsule networks, graph attention mechanisms, transformer modules, and residual learning to advance colon cancer classification on the Lung and Colon Cancer Histopathological Image Dataset (LC25000) dataset. The proposed model in this paper utilizes the HG-TNet model that introduces a hybrid architecture that joins strength points in transformers and convolutional neural networks to capture multi-scale features in histopathological images. Mainly, a transformer branch extracts global contextual bonds by partitioning the image into patches by convolution-based patch embedding and then processing these patches through a transformer encoder. Analogously, a dedicated CNN branch captures fine-grained, local details through successive Incorporation these diverse features, combined with a self-supervised rotation prediction objective, produce a robust diagnostic representation that surpasses standard architectures in performance. Results show better performance not only in accuracy or loss function but also in these algorithms by utilizing capsule networks to preserve spatial orders and realize how each element individually combines and forms whole structures.
- Abstract(参考訳): 大腸癌としても知られる大腸がんは、世界で最も悪性ながんの1つである。
大腸癌の早期発見は,その悪化を防ぐために極めて重要である。
本研究では,Lung and Colon Cancer Histopathological Image Dataset (LC25000)データセット上で,カプセルネットワーク,グラフアテンション機構,トランスフォーマーモジュール,残差学習を相乗化して大腸癌の分類を進めるハイブリッドマルチスケールディープラーニングアーキテクチャを提案する。
本稿では,HG-TNetモデルを用いて,トランスフォーマーと畳み込みニューラルネットワークの強度点を結合し,組織像のマルチスケール特徴を捉えるハイブリッドアーキテクチャを提案する。
主に、変換器分岐は、畳み込みベースのパッチ埋め込みによってイメージをパッチに分割し、変換器エンコーダを介してこれらのパッチを処理することにより、グローバルなコンテキスト結合を抽出する。
アナログ的に、専用のCNNブランチは、連続的なIncorporationを通じて、細かな局所的な詳細をキャプチャし、これら多様な特徴を自己教師付き回転予測目標と組み合わせることで、パフォーマンスの標準アーキテクチャを超える堅牢な診断表現を生成する。
その結果、精度や損失関数だけでなく、カプセルネットワークを利用して空間的秩序を保ち、各要素が個別に結合して構造全体を形成する方法を実現することにより、これらのアルゴリズムの性能も向上した。
関連論文リスト
- HistoViT: Vision Transformer for Accurate and Scalable Histopathological Cancer Diagnosis [1.5939351525664014]
マルチクラス腫瘍分類のためのトランスフォーマーに基づくディープラーニングフレームワークを提案する。
本手法は従来の畳み込みニューラルネットワークの限界に対処する。
アプローチ分類では, 乳がん, 前立腺癌, 骨癌, 頸部癌が99.32%, 96.92%, 95.28%, 96.94%であった。
論文 参考訳(メタデータ) (2025-08-15T03:10:52Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - BetterNet: An Efficient CNN Architecture with Residual Learning and Attention for Precision Polyp Segmentation [0.6062751776009752]
本研究では,ポリプセグメンテーションの精度を高めるために,残差学習と注意法を組み合わせた畳み込みニューラルネットワークアーキテクチャであるBetterNetを提案する。
BetterNetは、ポリープの検出と癌の早期認識を強化するために、コンピュータ支援診断技術を統合することを約束している。
論文 参考訳(メタデータ) (2024-05-05T21:08:49Z) - Benchmarking Image Transformers for Prostate Cancer Detection from Ultrasound Data [3.8208601340697386]
超音波画像における前立腺癌(PCa)の分類のための深層学習法は、通常、針トレース領域に沿った小さな領域(ROI)におけるがんを検出するために、畳み込みネットワーク(CNN)を用いている。
マルチ・インスタンス・ラーニング(MIL)を用いて複数のROIから癌を検出するために,トランスフォーマーの認識とCNN特徴抽出器を組み合わせることで,この問題を軽減するためのマルチスケールアプローチが提案されている。
本稿では、ROIスケールおよびマルチスケールの分類のための複数の画像トランスフォーマーアーキテクチャについて検討し、超音波による前立腺癌分類のためのCNNとトランスフォーマーの性能の比較を行った。
論文 参考訳(メタデータ) (2024-03-27T03:39:57Z) - SELECTOR: Heterogeneous graph network with convolutional masked autoencoder for multimodal robust prediction of cancer survival [8.403756148610269]
がん患者生存のマルチモーダル予測は、より包括的で正確なアプローチを提供する。
本稿では、畳み込みマスクエンコーダに基づく異種グラフ認識ネットワークであるSELECTORを紹介する。
本手法は,モダリティ欠落とモダリティ内情報確認の両事例において,最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-03-14T11:23:39Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z) - How GNNs Facilitate CNNs in Mining Geometric Information from
Large-Scale Medical Images [2.2699159408903484]
畳み込みニューラルネットワーク(CNN)が捉えたグローバルな画像レベルの表現を強化するための融合フレームワークを提案する。
大腸癌と胃癌の大規模なコホートから得られた組織学的データセットの融合戦略について検討した。
論文 参考訳(メタデータ) (2022-06-15T15:27:48Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unetは、医用画像セグメンテーション用のUnetライクなトランスフォーマーである。
トークン化されたイメージパッチは、TransformerベースのU字型デコーダデコーダアーキテクチャに供給される。
論文 参考訳(メタデータ) (2021-05-12T09:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。