論文の概要: Rashomon in the Streets: Explanation Ambiguity in Scene Understanding
- arxiv url: http://arxiv.org/abs/2509.03169v1
- Date: Wed, 03 Sep 2025 09:36:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 21:40:46.476731
- Title: Rashomon in the Streets: Explanation Ambiguity in Scene Understanding
- Title(参考訳): 通りの羅生門:風景理解における説明のあいまいさ
- Authors: Helge Spieker, Jørn Eirik Betten, Arnaud Gotlieb, Nadjib Lazaar, Nassim Belmecheri,
- Abstract要約: ラショモン効果は、複数の同じ精度のモデルが、同じ予測に対して異なる説明をすることができる場所である。
本稿では,実世界の運転シーンにおける行動予測の課題に対して,この効果の実証的定量化を行う。
本研究は, あいまいさは, モデリング人工物だけではなく, 問題の固有の性質であることを示すものである。
- 参考スコア(独自算出の注目度): 6.218742688352911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainable AI (XAI) is essential for validating and trusting models in safety-critical applications like autonomous driving. However, the reliability of XAI is challenged by the Rashomon effect, where multiple, equally accurate models can offer divergent explanations for the same prediction. This paper provides the first empirical quantification of this effect for the task of action prediction in real-world driving scenes. Using Qualitative Explainable Graphs (QXGs) as a symbolic scene representation, we train Rashomon sets of two distinct model classes: interpretable, pair-based gradient boosting models and complex, graph-based Graph Neural Networks (GNNs). Using feature attribution methods, we measure the agreement of explanations both within and between these classes. Our results reveal significant explanation disagreement. Our findings suggest that explanation ambiguity is an inherent property of the problem, not just a modeling artifact.
- Abstract(参考訳): XAI(Explainable AI)は、自律運転のような安全クリティカルなアプリケーションにおけるモデルの検証と信頼性に不可欠である。
しかし、XAIの信頼性は、複数の同じ精度のモデルが同じ予測に対して異なる説明を提供するラショモン効果に挑戦されている。
本稿では,実世界の運転シーンにおける行動予測の課題に対して,この効果の実証的定量化を行う。
定性的な説明可能なグラフ(QXG)を象徴的なシーン表現として使用し、解釈可能なペアベースの勾配ブースティングモデルとグラフベースのグラフニューラルネットワーク(GNN)という、2つの異なるモデルクラスの羅生門集合を訓練する。
特徴属性法を用いて,これらのクラス内およびクラス間の説明の一致を計測する。
私たちの結果は、大きな説明の相違が浮かび上がっている。
本研究は, あいまいさは, モデリング人工物だけではなく, 問題の固有の性質であることを示すものである。
関連論文リスト
- Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Probing Graph Representations [77.7361299039905]
グラフ表現でキャプチャされた意味のある情報の量を定量化するために、探索フレームワークを使用します。
本研究は, グラフモデルにおける帰納的バイアスを理解するための探索の可能性を示すものである。
グラフベースモデルを評価する上で有用な診断ツールとして,探索を提唱する。
論文 参考訳(メタデータ) (2023-03-07T14:58:18Z) - MEGAN: Multi-Explanation Graph Attention Network [1.1470070927586016]
マルチエクスラレーショングラフアテンションネットワーク(MEGAN)を提案する。
既存のグラフ説明可能性法とは異なり、ネットワークは複数のチャネルに沿ってノードとエッジの属性の説明を生成することができる。
我々の注意に基づくネットワークは完全に差別化可能であり、説明を指導的な方法で積極的に訓練することができる。
論文 参考訳(メタデータ) (2022-11-23T16:10:13Z) - Motif-guided Time Series Counterfactual Explanations [1.1510009152620664]
本稿では,ポストホックな反事実的説明を直感的に生成する新しいモデルを提案する。
UCRリポジトリから5つの実世界の時系列データセットを用いてモデルを検証した。
論文 参考訳(メタデータ) (2022-11-08T17:56:50Z) - CLEAR: Generative Counterfactual Explanations on Graphs [60.30009215290265]
グラフ上での対実的説明生成の問題について検討する。
グラフに関する反実的な説明を調査する研究はいくつかあるが、この問題の多くの課題はまだ十分に適応されていない。
本稿では,グラフレベルの予測モデルに対して,グラフ上の反実的説明を生成するための新しいフレームワークCLEARを提案する。
論文 参考訳(メタデータ) (2022-10-16T04:35:32Z) - Greybox XAI: a Neural-Symbolic learning framework to produce
interpretable predictions for image classification [6.940242990198]
Greybox XAIは、シンボリック知識ベース(KB)を使うことで、DNNと透明モデルを構成するフレームワークである。
我々は、XAIの普遍的基準が欠如している問題に、説明が何であるかを形式化することで対処する。
この新しいアーキテクチャがどのように正確で、いくつかのデータセットで説明可能であるかを示す。
論文 参考訳(メタデータ) (2022-09-26T08:55:31Z) - Reinforced Causal Explainer for Graph Neural Networks [112.57265240212001]
グラフニューラルネットワーク(GNN)の探索には説明可能性が不可欠である
我々は強化学習エージェントReinforced Causal Explainer (RC-Explainer)を提案する。
RC-Explainerは忠実で簡潔な説明を生成し、グラフを見えなくするより優れたパワーを持つ。
論文 参考訳(メタデータ) (2022-04-23T09:13:25Z) - GLIME: A new graphical methodology for interpretable model-agnostic
explanations [0.0]
本稿では,ブラックボックスモデルのための新しいグラフィカルな説明可能性ツールの開発に寄与する。
gLIMEと呼ばれる提案されたXAI方法論は、グローバル(データセット全体)またはローカルスケール(特定のデータポイント)でグラフィカルなモデルに依存しない説明を提供する。
論文 参考訳(メタデータ) (2021-07-21T08:06:40Z) - Contrastive Explanations for Model Interpretability [77.92370750072831]
分類モデルの対照的説明を生成する手法を提案する。
本手法は潜在空間へのモデル表現の投影に基づいている。
本研究は,モデル決定のより正確できめ細かな解釈性を提供するためのラベルコントラスト的説明の能力に光を当てた。
論文 参考訳(メタデータ) (2021-03-02T00:36:45Z) - Dependency Decomposition and a Reject Option for Explainable Models [4.94950858749529]
近年のディープラーニングモデルは様々な推論タスクにおいて非常によく機能する。
最近の進歩は特徴を視覚化し、入力の属性を記述する方法を提供します。
本稿では, 目的の画像分類出力に対する確率分布に関する依存性を初めて解析する。
論文 参考訳(メタデータ) (2020-12-11T17:39:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。