論文の概要: LGBP-OrgaNet: Learnable Gaussian Band Pass Fusion of CNN and Transformer Features for Robust Organoid Segmentation and Tracking
- arxiv url: http://arxiv.org/abs/2509.03221v1
- Date: Wed, 03 Sep 2025 11:24:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 21:40:46.494883
- Title: LGBP-OrgaNet: Learnable Gaussian Band Pass Fusion of CNN and Transformer Features for Robust Organoid Segmentation and Tracking
- Title(参考訳): LGBP-OrgaNet:学習可能なCNNのガウスバンドパスフュージョンとロバストなオルガノイドセグメンテーションと追跡のための変圧器機能
- Authors: Jing Zhang, Siying Tao, Jiao Li, Tianhe Wang, Junchen Wu, Ruqian Hao, Xiaohui Du, Ruirong Tan, Rui Li,
- Abstract要約: オルガノイドは臓器の構造と機能を複製し、腫瘍治療や薬物スクリーニングなどの分野で重要な役割を果たす。
本稿では,オルガノイドのセグメンテーションと追跡の自動化,非破壊的手法を提案する。
我々はLGBP-OrgaNetというディープラーニングベースのシステムを導入し,オルガノイドのセグメンテーション,追跡,定量化に長けている。
- 参考スコア(独自算出の注目度): 9.845651084585645
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Organoids replicate organ structure and function, playing a crucial role in fields such as tumor treatment and drug screening. Their shape and size can indicate their developmental status, but traditional fluorescence labeling methods risk compromising their structure. Therefore, this paper proposes an automated, non-destructive approach to organoid segmentation and tracking. We introduced the LGBP-OrgaNet, a deep learning-based system proficient in accurately segmenting, tracking, and quantifying organoids. The model leverages complementary information extracted from CNN and Transformer modules and introduces the innovative feature fusion module, Learnable Gaussian Band Pass Fusion, to merge data from two branches. Additionally, in the decoder, the model proposes a Bidirectional Cross Fusion Block to fuse multi-scale features, and finally completes the decoding through progressive concatenation and upsampling. SROrga demonstrates satisfactory segmentation accuracy and robustness on organoids segmentation datasets, providing a potent tool for organoid research.
- Abstract(参考訳): オルガノイドは臓器の構造と機能を複製し、腫瘍治療や薬物スクリーニングなどの分野で重要な役割を果たす。
形状と大きさは発達状態を示す可能性があるが、従来の蛍光標識法は構造を悪化させるリスクがある。
そこで本研究では,オルガノイドのセグメンテーションとトラッキングに対する非破壊的自動手法を提案する。
我々はLGBP-OrgaNetというディープラーニングベースのシステムを導入し,オルガノイドのセグメンテーション,追跡,定量化に長けている。
このモデルは、CNNとTransformerモジュールから抽出した補完情報を活用し、革新的な機能融合モジュールであるLearable Gaussian Band Pass Fusionを導入し、2つのブランチからデータをマージする。
さらに、デコーダでは、マルチスケール機能を融合するための双方向クロスフュージョンブロックを提案し、最終的にプログレッシブな結合とアップサンプリングによってデコードを完成させる。
SROrgaは、オルガノイドのセグメンテーションデータセットに十分なセグメンテーション精度とロバスト性を示し、オルガノイド研究のための強力なツールを提供する。
関連論文リスト
- FIAS: Feature Imbalance-Aware Medical Image Segmentation with Dynamic Fusion and Mixing Attention [11.385231493066312]
畳み込みニューラルネットワーク(CNN)とトランスフォーマーを組み合わせたハイブリッドアーキテクチャは、医療画像セグメンテーションにおける競争力を示している。
本稿では、デュアルパスエンコーダとMixAtt(MixAtt)デコーダを組み込んだフェール・インバランス・アウェア(FIAS)ネットワークを提案する。
論文 参考訳(メタデータ) (2024-11-16T20:30:44Z) - AFFSegNet: Adaptive Feature Fusion Segmentation Network for Microtumors and Multi-Organ Segmentation [31.97835089989928]
医用画像のセグメンテーションは、コンピュータビジョンにおいて重要な課題であり、診断、治療計画、疾患モニタリングにおける臨床医を支援する。
本稿では,局所的特徴とグローバルな特徴を効果的に統合し,正確な医用画像分割を実現するトランスフォーマアーキテクチャである適応意味ネットワーク(ASSNet)を提案する。
多臓器、肝腫瘍、膀胱腫瘍の分節を含む様々な医療画像の分節タスクに関するテストは、ATSNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2024-09-12T06:25:44Z) - CFPFormer: Feature-pyramid like Transformer Decoder for Segmentation and Detection [1.837431956557716]
本稿では,Cross Feature Pyramid Transformer Decoder (CFPFormer)を提案する。
私たちの仕事は、長距離の依存関係をキャプチャし、効果的にアップサンプルのフィーチャーマップを作成できます。
ResNet50のバックボーンにより,92.02%のDice Scoreを実現し,本手法の有効性を強調した。
論文 参考訳(メタデータ) (2024-04-23T18:46:07Z) - ParaTransCNN: Parallelized TransCNN Encoder for Medical Image
Segmentation [7.955518153976858]
本稿では,畳み込みニューラルネットワークとトランスフォーマーアーキテクチャを組み合わせた2次元特徴抽出手法を提案する。
特に小臓器では, セグメンテーションの精度が向上した。
論文 参考訳(メタデータ) (2024-01-27T05:58:36Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
本稿では,トランスフォーマーに基づく動的オンデマンドネットワーク(TransDoDNet)を提案する。
動的ヘッドにより、ネットワークは複数のセグメンテーションタスクを柔軟に達成することができる。
我々はMOTSと呼ばれる大規模にラベル付けされたMulti-Organ and tumorベンチマークを作成し、他の競合相手よりもTransDoDNetの方が優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-13T13:03:09Z) - SIM-Trans: Structure Information Modeling Transformer for Fine-grained
Visual Categorization [59.732036564862796]
本稿では,オブジェクト構造情報を変換器に組み込んだSIM-Trans(Structure Information Modeling Transformer)を提案する。
提案した2つのモジュールは軽量化されており、任意のトランスフォーマーネットワークにプラグインでき、エンドツーエンドで容易に訓練できる。
実験と解析により,提案したSIM-Transが細粒度視覚分類ベンチマークの最先端性能を達成することを示した。
論文 参考訳(メタデータ) (2022-08-31T03:00:07Z) - Focused Decoding Enables 3D Anatomical Detection by Transformers [64.36530874341666]
集束デコーダと呼ばれる3次元解剖学的構造検出のための新しい検出変換器を提案する。
Focused Decoderは、解剖学的領域のアトラスからの情報を活用して、クエリアンカーを同時にデプロイし、クロスアテンションの視野を制限する。
提案手法を利用可能な2つのCTデータセットに対して評価し、フォーカスドデコーダが強力な検出結果を提供するだけでなく、大量の注釈付きデータの必要性を軽減し、注意重みによる結果の例外的で直感的な説明性を示すことを示した。
論文 参考訳(メタデータ) (2022-07-21T22:17:21Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
医用画像セグメンテーションのためのトランスフォーマーベースUNetを提案する。
グローバルな意味情報と局所的な空間的詳細特徴を同時に学習する。
MISSUは従来の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-06-02T07:38:53Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
そこで我々は,アノテーション付きオルガンクラスから一般化されたオルガン概念を学習し,その概念を未知のクラスに転送するOrganNetを提案する。
そこで,OrganNetは臓器形態の幅広い変化に効果的に抵抗でき,一発分節タスクで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-30T13:41:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。