論文の概要: Fair Resource Allocation for Fleet Intelligence
- arxiv url: http://arxiv.org/abs/2509.03353v1
- Date: Tue, 02 Sep 2025 03:20:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 21:40:46.550474
- Title: Fair Resource Allocation for Fleet Intelligence
- Title(参考訳): 艦隊インテリジェンスのための公平な資源配分
- Authors: Oguzhan Baser, Kaan Kale, Po-han Li, Sandeep Chinchali,
- Abstract要約: 私たちはFair-Synergyをオープンソースとして公開しました。
MNIST, CIFAR-10, CIFAR-100, BDD, GLUEなどのデータセット上で, BERT, VGG16, MobileNet, ResNetsなどの高度なビジョンと言語モデルを用いてFair-Synergyを評価した。
Fair-Synergyはマルチエージェント推論では25%,マルチエージェント学習では11%,標準ベンチマークでは25%を上回ります。
- 参考スコア(独自算出の注目度): 6.70517744733229
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Resource allocation is crucial for the performance optimization of cloud-assisted multi-agent intelligence. Traditional methods often overlook agents' diverse computational capabilities and complex operating environments, leading to inefficient and unfair resource distribution. To address this, we open-sourced Fair-Synergy, an algorithmic framework that utilizes the concave relationship between the agents' accuracy and the system resources to ensure fair resource allocation across fleet intelligence. We extend traditional allocation approaches to encompass a multidimensional machine learning utility landscape defined by model parameters, training data volume, and task complexity. We evaluate Fair-Synergy with advanced vision and language models such as BERT, VGG16, MobileNet, and ResNets on datasets including MNIST, CIFAR-10, CIFAR-100, BDD, and GLUE. We demonstrate that Fair-Synergy outperforms standard benchmarks by up to 25% in multi-agent inference and 11% in multi-agent learning settings. Also, we explore how the level of fairness affects the least advantaged, most advantaged, and average agents, providing insights for equitable fleet intelligence.
- Abstract(参考訳): リソース割り当ては、クラウド支援マルチエージェントインテリジェンスのパフォーマンス最適化に不可欠である。
伝統的な手法はエージェントの多様な計算能力と複雑な運用環境を見落とし、非効率で不公平な資源分布をもたらす。
これを解決するために、エージェントの精度とシステムリソースの凹凸関係を利用して、艦隊の諜報機関間での公平なリソース割り当てを保証するアルゴリズムフレームワークであるFair-Synergyをオープンソース化した。
従来のアロケーションアプローチを拡張して、モデルパラメータ、トレーニングデータボリューム、タスク複雑性によって定義された多次元機械学習ユーティリティランドスケープを包含する。
MNIST, CIFAR-10, CIFAR-100, BDD, GLUEなどのデータセット上で, BERT, VGG16, MobileNet, ResNetsなどの高度なビジョンと言語モデルを用いてFair-Synergyを評価した。
Fair-Synergyはマルチエージェント推論では25%,マルチエージェント学習では11%,標準ベンチマークでは25%を上回ります。
また、フェアネスのレベルが、最も有利で、最も有利で、平均的なエージェントにどのように影響し、平等な艦隊インテリジェンスに対する洞察を提供するかを検討する。
関連論文リスト
- Symbiotic Agents: A Novel Paradigm for Trustworthy AGI-driven Networks [1.5684305805304426]
大規模言語モデル(LLM)に基づく自律エージェントは、6Gネットワークの進化において重要な役割を果たすことが期待されている。
我々は、LLMのリアルタイム最適化アルゴリズムをTrustworthy AIに組み合わせた新しいエージェントパラダイムを導入する。
本稿では,AGIネットワークのエンドツーエンドアーキテクチャを提案し,移動車からのチャネル変動をキャプチャする5Gテストベッド上で評価する。
論文 参考訳(メタデータ) (2025-07-23T17:01:23Z) - WebSailor: Navigating Super-human Reasoning for Web Agent [72.5231321118689]
WebSailorは、この重要な機能を組み込むように設計された、完全なポストトレーニング方法論である。
我々のアプローチは、構造化サンプリングと情報難読化によって、新しい、不確実なタスクを生成することである。
WebSailorは複雑な情報検索タスクにおいて、すべてのオープンソースエージェントを著しく上回っている。
論文 参考訳(メタデータ) (2025-07-03T12:59:07Z) - Co-Saving: Resource Aware Multi-Agent Collaboration for Software Development [65.94639060883475]
本稿では,リソースを意識したマルチエージェントシステムであるCo-Savingを提案する。
私たちの重要なイノベーションは、"ショートカット"の導入です。
最先端のMAS ChatDevと比較して,トークン使用量の平均50.85%の削減を実現している。
論文 参考訳(メタデータ) (2025-05-28T02:23:53Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Load Balancing in Federated Learning [3.2999744336237384]
Federated Learning(FL)は、複数のリモートデバイスに分散したデータからの学習を可能にする、分散機械学習フレームワークである。
本稿では,情報時代に基づくスケジューリングポリシーの負荷指標を提案する。
マルコフ連鎖モデルの最適パラメータを確立し、シミュレーションによりアプローチを検証する。
論文 参考訳(メタデータ) (2024-08-01T00:56:36Z) - Resource allocation in dynamic multiagent systems [0.0]
MG-RAOアルゴリズムは,マルチエージェントシステムにおける資源配分問題を解決するために開発された。
シミュレーション環境における固定リソース割り当てに対する23~28%の改善を示す。
また、揮発性システムでは、mg-raoアルゴリズムを用いて、子エージェントがすべてのエージェントのリソース割り当てをモデル化するように構成されているため、複数のエージェント群をモデル化するときのパフォーマンスは46.5%である。
論文 参考訳(メタデータ) (2021-02-16T17:56:23Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
本稿では,マルチアクセスエッジコンピューティングサーバにおいて,複数のフェデレーション付き学習サービスの新たなモデルについて検討する。
共同資源最適化とハイパーラーニング率制御の問題,すなわちMS-FEDLを提案する。
シミュレーションの結果,提案アルゴリズムの収束性能を実証した。
論文 参考訳(メタデータ) (2020-11-25T01:29:41Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
我々は,MAML や Dif-MAML と呼ばれる協調型マルチエージェントメタ学習アルゴリズムを提案する。
提案手法により, エージェントの集合が線形速度で合意に達し, 集約MAMLの定常点に収束できることを示す。
シミュレーションの結果は従来の非協調的な環境と比較して理論的な結果と優れた性能を示している。
論文 参考訳(メタデータ) (2020-10-06T16:51:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。