論文の概要: Lightweight image segmentation for echocardiography
- arxiv url: http://arxiv.org/abs/2509.03631v1
- Date: Wed, 03 Sep 2025 18:33:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-05 20:21:09.940093
- Title: Lightweight image segmentation for echocardiography
- Title(参考訳): 心エコー図のための軽量画像分割法
- Authors: Anders Kjelsrud, Lasse Løvstakken, Erik Smistad, Håvard Dalen, Gilles Van De Vyver,
- Abstract要約: 我々は,CAMUS上のnnU-Netと統計的に等価な性能を実現する軽量なU-Netを開発した。
解析の結果,単純なアフィン増倍と深い監視駆動性能,複雑な増倍とモデルキャパシティはリターンを低下させることがわかった。
- 参考スコア(独自算出の注目度): 0.45360533198417524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate segmentation of the left ventricle in echocardiography can enable fully automatic extraction of clinical measurements such as volumes and ejection fraction. While models configured by nnU-Net perform well, they are large and slow, thus limiting real-time use. We identified the most effective components of nnU-Net for cardiac segmentation through an ablation study, incrementally evaluating data augmentation schemes, architectural modifications, loss functions, and post-processing techniques. Our analysis revealed that simple affine augmentations and deep supervision drive performance, while complex augmentations and large model capacity offer diminishing returns. Based on these insights, we developed a lightweight U-Net (2M vs 33M parameters) that achieves statistically equivalent performance to nnU-Net on CAMUS (N=500) with Dice scores of 0.93/0.85/0.89 vs 0.93/0.86/0.89 for LV/MYO/LA ($p>0.05$), while being 16 times smaller and 4 times faster (1.35ms vs 5.40ms per frame) than the default nnU-Net configuration. Cross-dataset evaluation on an internal dataset (N=311) confirms comparable generalization.
- Abstract(参考訳): 心エコー図における左心室の正確なセグメンテーションは、容積や吐出率などの臨床的測定の完全自動抽出を可能にする。
nnU-Netによって構成されたモデルはよく機能するが、大きくて遅いため、リアルタイムの使用が制限される。
心房細動に対するnnU-Netの最も効果的な構成要素をアブレーション研究により同定し,データ拡張スキーム,構造変更,損失関数,後処理技術などを漸進的に評価した。
解析の結果,単純なアフィン増倍と深い監視駆動性能,複雑な増倍とモデルキャパシティはリターンを低下させることがわかった。
これらの知見に基づいて、Diceスコアが0.93/0.85/0.89対0.93/0.86/0.89対LV/MYO/LA(p>0.05$)であるCAMUS(N=500)上のnnU-Netに統計的に等価な性能を実現する軽量なU-Net(2M vs 33Mパラメータ)を開発した。
内部データセット(N=311)上のクロスデータセット評価は、同等の一般化を確認する。
関連論文リスト
- Simple is what you need for efficient and accurate medical image segmentation [7.2109224546543675]
本稿では,スケーラブルな超軽量医用画像分割モデルSimpleUNetを提案する。
記録破りの16KBパラメータ設定により、SimpleUNetはLBUNetや他の軽量ベンチマークを上回っている。
0.67MBの派生型は、より優れた効率(8.60 GFLOPs)と精度を実現し、マルチセンターの乳房病変のデータセットの平均DSC/IoUは85.76%/75.60%に達した。
論文 参考訳(メタデータ) (2025-06-16T12:31:48Z) - Speedy MASt3R [68.47052557089631]
MASt3Rは、DUSt3Rを活用して高速な相互マッチング方式を導入することで、画像マッチングを3Dタスクとして再定義する。
高速MASt3Rは、精度を犠牲にすることなく、推論時間(画像ペアあたり198msから91ms)を54%削減する。
この進歩により、リアルタイムな3D理解が可能になり、複合現実ナビゲーションや大規模3Dシーン再構築といったアプリケーションに恩恵をもたらす。
論文 参考訳(メタデータ) (2025-03-13T03:56:22Z) - Data-Free Dynamic Compression of CNNs for Tractable Efficiency [46.498278084317704]
構造化プルーニング手法は, 精度が大幅に低下することなく浮動小数点演算を低下させる可能性を示唆している。
HASTE(Hashing for Tractable Efficiency)は,データフリーでプラグイン・アンド・プレイのコンボリューションモジュールで,トレーニングや微調整なしにネットワークのテスト時間推論コストを瞬時に低減する。
CIFAR-10とImageNetでは46.72%のFLOPを1.25%の精度で削減した。
論文 参考訳(メタデータ) (2023-09-29T13:09:40Z) - Non-pooling Network for medical image segmentation [11.956054700035326]
本稿では,非プールネットワーク(NPNet)を提案する。
NPNetのセマンティックセマンティックセグメンテーションモデルを,w i t h多重状態(SOTA)モデルと比較した3つのベンチマークデータセットで評価した。
論文 参考訳(メタデータ) (2023-02-21T02:49:16Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
本稿では,高画質なセグメンテーションマスクと,パラメータ,計算コスト,推論速度の両面での効率性を提供するUNETR++という3次元医用画像セグメンテーション手法を提案する。
我々の設計の核となるのは、空間的およびチャネル的な識別的特徴を効率的に学習する、新しい効率的な対注意ブロック(EPA)の導入である。
Synapse, BTCV, ACDC, BRaTs, Decathlon-Lungの5つのベンチマークで評価した結果, 効率と精度の両面で, コントリビューションの有効性が示された。
論文 参考訳(メタデータ) (2022-12-08T18:59:57Z) - Lightweight and Progressively-Scalable Networks for Semantic
Segmentation [100.63114424262234]
マルチスケール学習フレームワークは,セマンティックセグメンテーションを向上する有効なモデルのクラスと見なされてきた。
本稿では,畳み込みブロックの設計と,複数スケールにわたる相互作用の仕方について,徹底的に解析する。
我々は,軽量で拡張性の高いネットワーク(LPS-Net)を考案した。
論文 参考訳(メタデータ) (2022-07-27T16:00:28Z) - Efficient Context-Aware Network for Abdominal Multi-organ Segmentation [8.92337236455273]
腹腔内多臓器分画を効果的かつ効果的に行うための網羅的粗粒化フレームワークを開発した。
デコーダモジュールでは、k*k*1のスライス内畳み込みと1*1*kのスライス間畳み込みによる異方性畳み込みが、負担を軽減するように設計されている。
コンテキストブロックに対して、異方性と長距離のコンテキスト情報をキャプチャするためのストリッププーリングモジュールを提案する。
論文 参考訳(メタデータ) (2021-09-22T09:05:59Z) - A study of CNN capacity applied to Left Venticle Segmentation in Cardiac
MRI [0.0]
心臓MRI(Magnetic Resonance Imaging)における左心室(LV)セグメンテーションにCNNモデルが有用であった1例
1) より深いものではなく、浅いモデルを使う方がよいのはいつですか?
我々は,100から10,000の画像,異なるネットワークサイズ,学習率,正規化値の6つのサブセットで,スクラッチからトレーニングした3つのU-Netファミリーの深部および浅部バージョンを実験することによって,それに対応するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-03T00:56:21Z) - 3D U-Net for segmentation of COVID-19 associated pulmonary infiltrates
using transfer learning: State-of-the-art results on affordable hardware [0.0]
肺浸潤物はCOVID-19の重症度を評価するのに役立ちますが、手動セグメンテーションは労働力と時間集約的です。
神経ネットワークを用いて肺浸潤を分断すると、このタスクは自動化される。
限られたハードウェアと短時間で最先端のセグメンテーションモデルをトレーニングするためのトランスファーラーニングの使用方法に関するソリューションを開発し、テストしました。
論文 参考訳(メタデータ) (2021-01-25T09:37:32Z) - Inception Convolution with Efficient Dilation Search [121.41030859447487]
拡散畳み込みは、効果的な受容場を制御し、オブジェクトの大規模な分散を処理するための標準的な畳み込みニューラルネットワークの重要な変異体である。
そこで我々は,異なる軸,チャネル,層間の独立な拡散を有する拡張畳み込みの新たな変異体,すなわち開始(拡張)畳み込みを提案する。
本稿では,データに複雑なインセプション・コンボリューションを適合させる実用的な手法を探索し,統計的最適化に基づく簡易かつ効果的な拡張探索アルゴリズム(EDO)を開発した。
論文 参考訳(メタデータ) (2020-12-25T14:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。