論文の概要: MLSD: A Novel Few-Shot Learning Approach to Enhance Cross-Target and Cross-Domain Stance Detection
- arxiv url: http://arxiv.org/abs/2509.03725v1
- Date: Wed, 03 Sep 2025 21:12:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-05 20:21:09.9719
- Title: MLSD: A Novel Few-Shot Learning Approach to Enhance Cross-Target and Cross-Domain Stance Detection
- Title(参考訳): MLSD: クロスターゲットとクロスドメインスタンス検出を実現するための新しいFew-Shot Learningアプローチ
- Authors: Parush Gera, Tempestt Neal,
- Abstract要約: 本稿では、ドメインとターゲット間のスタンス検出のための新しいアプローチ、クロスターゲットのためのメトリック学習に基づくFew-Shot Learningとクロスドメインスタンス検出(MLSD)を提案する。
MLSDは、三重項損失を伴うメートル法学習を利用して、意味的類似性とスタンスターゲットの違いを捉え、ドメイン適応を向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the novel approach for stance detection across domains and targets, Metric Learning-Based Few-Shot Learning for Cross-Target and Cross-Domain Stance Detection (MLSD). MLSD utilizes metric learning with triplet loss to capture semantic similarities and differences between stance targets, enhancing domain adaptation. By constructing a discriminative embedding space, MLSD allows a cross-target or cross-domain stance detection model to acquire useful examples from new target domains. We evaluate MLSD in multiple cross-target and cross-domain scenarios across two datasets, showing statistically significant improvement in stance detection performance across six widely used stance detection models.
- Abstract(参考訳): 本稿では,ドメインとターゲット間のスタンス検出のための新しいアプローチとして,クロスターゲットのためのメトリックラーニングベースのFew-Shot Learningとクロスドメインスタンス検出(MLSD)を提案する。
MLSDは、三重項損失を伴うメートル法学習を利用して、意味的類似性とスタンスターゲットの違いを捉え、ドメイン適応を向上させる。
識別的な埋め込み空間を構築することで、MLSDは新しいターゲットドメインから有用なサンプルを取得するために、クロスターゲットまたはクロスドメインのスタンス検出モデルを可能にする。
我々は,MLSDを2つのデータセットにまたがる複数のクロスターゲットおよびクロスドメインシナリオで評価し,広く使用されている6つのスタンス検出モデルにおけるスタンス検出性能の統計的に有意な改善を示した。
関連論文リスト
- Understanding the Cross-Domain Capabilities of Video-Based Few-Shot Action Recognition Models [3.072340427031969]
Few-shot Action Recognition (FSAR) は、ビデオ中の新しいアクションをわずかに例を使って識別できるモデルを学ぶことを目的としている。
メタトレーニング中に見られるベースデータセットと評価に使用される新しいデータセットは、異なるドメインから得ることができると仮定すると、クロスドメインの少数ショット学習によってデータ収集とアノテーションコストが軽減される。
我々は、新しいクロスドメインタスクに対して、既存の最先端の単一ドメイン、転送ベース、およびクロスドメインFSARメソッドを体系的に評価する。
論文 参考訳(メタデータ) (2024-06-03T07:48:18Z) - Robust Stance Detection: Understanding Public Perceptions in Social Media [15.460495567765362]
スタンス検出は、明確に定義されたトピックに対する正確な位置を特定する。
従来のスタンス検出モデルは、新しいドメインやトピックに適用すると、パフォーマンスが低下することが多い。
本稿では,反実データ拡張と対照的な学習を組み合わせることで,姿勢検出の堅牢性を高める方法を提案する。
論文 参考訳(メタデータ) (2023-09-26T18:19:51Z) - Few-shot Learning for Cross-Target Stance Detection by Aggregating
Multimodal Embeddings [16.39344929765961]
テキストとネットワークの両方の特徴からマルチモーダルな埋め込みを集約する新しいモデルであるCT-TNを導入する。
本研究は,ソース・デスティネーション・ターゲット・ペアの6つの異なる組み合わせについて,数ショットのクロスターゲット・シナリオで実験を行う。
異なる数のショットで実験したところ、CT-TNは目的地の300のインスタンスを見た後、他のモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-01-11T15:52:55Z) - Exploiting Domain Transferability for Collaborative Inter-level Domain
Adaptive Object Detection [17.61278045720336]
オブジェクト検出のためのドメイン適応(DAOD)は、アノテーションなしで対象オブジェクトを検出できるため、最近注目を集めている。
従来の研究は、2段階検出器の部分的なレベルから抽出した特徴を、対向訓練によって整列させることに重点を置いていた。
本稿では,マルチスケール対応不確実性注意(MUA),転送可能領域ネットワーク(TRPN),動的インスタンスサンプリング(DIS)の3つのコンポーネントを用いた提案手法を提案する。
論文 参考訳(メタデータ) (2022-07-20T01:50:26Z) - Ranking Distance Calibration for Cross-Domain Few-Shot Learning [91.22458739205766]
数ショット学習の最近の進歩は、より現実的なクロスドメイン設定を促進する。
ドメインギャップとソースとターゲットデータセット間のラベル空間の相違により、共有される知識は極めて限られている。
我々は,タスク内の相互k-アネレスト近傍を発見することで,目標距離行列の校正を行う。
論文 参考訳(メタデータ) (2021-12-01T03:36:58Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
ディープラーニングに基づく3Dオブジェクト検出は、大規模な自律走行データセットの出現によって、前例のない成功を収めた。
既存の3Dドメイン適応検出手法は、しばしばターゲットのドメインアノテーションへの事前アクセスを前提とします。
我々は、ソースドメインアノテーションのみを利用する、より現実的な、教師なしの3Dドメイン適応検出について研究する。
論文 参考訳(メタデータ) (2021-07-23T17:19:23Z) - Bi-Dimensional Feature Alignment for Cross-Domain Object Detection [71.85594342357815]
教師なしクロスドメイン検出モデルを提案する。
ソースドメインのアノテーション付きデータを利用して、異なるターゲットドメインに対してオブジェクト検出器をトレーニングする。
提案モデルでは、オブジェクト検出のためのクロスドメイン表現のばらつきを緩和する。
論文 参考訳(メタデータ) (2020-11-14T03:03:11Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
部分的なドメイン適応は、より大きく多様なソースドメインからの知識を、より少ないクラス数でより小さなターゲットドメインに適応させることを目的としています。
ドメイン適応の最近の実践は、ターゲットドメインの擬似ラベルを組み込むことで、効果的な特徴を抽出する。
ターゲットデータを少数のソースデータのみにアライメントすることが不可欠である。
論文 参考訳(メタデータ) (2020-08-26T03:18:53Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
本稿では,クロスドメインオブジェクト検出のための特徴適応手法を提案する。
粗粒度では、アテンション機構を採用して前景領域を抽出し、その辺縁分布に応じて整列する。
粒度の細かい段階では、同じカテゴリのグローバルプロトタイプと異なるドメインとの距離を最小化することにより、前景の条件分布アライメントを行う。
論文 参考訳(メタデータ) (2020-03-23T13:40:06Z) - Multi-Source Domain Adaptation for Text Classification via
DistanceNet-Bandits [101.68525259222164]
本研究では,NLPタスクのコンテキストにおいて,サンプル推定に基づく領域間の相違を特徴付ける様々な距離ベース尺度について検討する。
タスクの損失関数と協調して最小化するために,これらの距離測度を付加的な損失関数として用いるディスタンスネットモデルを開発した。
マルチアーム・バンド・コントローラを用いて複数のソース・ドメインを動的に切り替えるDistanceNet-Banditモデルに拡張する。
論文 参考訳(メタデータ) (2020-01-13T15:53:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。