論文の概要: Enhancing Technical Documents Retrieval for RAG
- arxiv url: http://arxiv.org/abs/2509.04139v1
- Date: Thu, 04 Sep 2025 12:11:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-05 20:21:10.151748
- Title: Enhancing Technical Documents Retrieval for RAG
- Title(参考訳): RAGのための技術ドキュメント検索の強化
- Authors: Songjiang Lai, Tsun-Hin Cheung, Ka-Chun Fung, Kaiwen Xue, Kwan-Ho Lin, Yan-Ming Choi, Vincent Ng, Kin-Man Lam,
- Abstract要約: Technical-Embeddingsは、技術ドキュメントのセマンティック検索を最適化するために設計された新しいフレームワークである。
この研究は、検索可能拡張生成(RAG)システムの現状を前進させ、効率的かつ正確な技術文書検索のための新しい手段を提供する。
- 参考スコア(独自算出の注目度): 20.424634673802284
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we introduce Technical-Embeddings, a novel framework designed to optimize semantic retrieval in technical documentation, with applications in both hardware and software development. Our approach addresses the challenges of understanding and retrieving complex technical content by leveraging the capabilities of Large Language Models (LLMs). First, we enhance user queries by generating expanded representations that better capture user intent and improve dataset diversity, thereby enriching the fine-tuning process for embedding models. Second, we apply summary extraction techniques to encode essential contextual information, refining the representation of technical documents. To further enhance retrieval performance, we fine-tune a bi-encoder BERT model using soft prompting, incorporating separate learning parameters for queries and document context to capture fine-grained semantic nuances. We evaluate our approach on two public datasets, RAG-EDA and Rust-Docs-QA, demonstrating that Technical-Embeddings significantly outperforms baseline models in both precision and recall. Our findings highlight the effectiveness of integrating query expansion and contextual summarization to enhance information access and comprehension in technical domains. This work advances the state of Retrieval-Augmented Generation (RAG) systems, offering new avenues for efficient and accurate technical document retrieval in engineering and product development workflows.
- Abstract(参考訳): 本稿では,技術ドキュメントのセマンティック検索を最適化する新しいフレームワークであるTechnical-Embeddingsを紹介する。
本稿では,Large Language Models (LLM) の機能を活用することで,複雑な技術内容の理解と検索の課題に対処する。
まず、ユーザ意図をよりよく捉え、データセットの多様性を向上させる拡張表現を生成し、モデル埋め込みのための微調整プロセスを強化することで、ユーザクエリを強化します。
第2に,重要な文脈情報をエンコードするために要約抽出手法を適用し,技術文書の表現を精査する。
検索性能をさらに向上するため、ソフトプロンプトを用いてバイエンコーダBERTモデルを微調整し、クエリと文書コンテキストの個別学習パラメータを組み込んで、きめ細かなセマンティックなニュアンスをキャプチャする。
我々は、RAG-EDAとRust-Docs-QAの2つの公開データセットに対するアプローチを評価し、Technical-Embeddingsがベースラインモデルを精度とリコールの両方で大幅に上回っていることを実証した。
本研究は,技術領域における情報アクセスと理解を高めるために,クエリ拡張とコンテキスト要約を統合することの有効性を強調した。
この作業は、エンジニアリングおよび製品開発ワークフローにおける、効率的かつ正確な技術ドキュメント検索のための新しい道を提供する、検索型拡張生成(RAG)システムの現状を前進させる。
関連論文リスト
- Leveraging Generative Models for Real-Time Query-Driven Text Summarization in Large-Scale Web Search [54.987957691350665]
クエリ駆動テキスト要約(QDTS)は、与えられたクエリに基づいてテキスト文書から簡潔で情報的な要約を生成することを目的としている。
従来の抽出的要約モデルは、主にランク付け候補の要約セグメントに基づいており、産業応用において支配的なアプローチとなっている。
産業Web検索におけるリアルタイムQDTSに対処するための生成モデルの適用を開拓するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-28T08:51:51Z) - An analysis of vision-language models for fabric retrieval [4.311804611758908]
情報検索やレコメンデーションシステムといったアプリケーションには,クロスモーダル検索が不可欠である。
本稿では,ファブリックサンプルのゼロショットテキスト・ツー・イメージ検索におけるビジョン言語モデルの利用について検討する。
論文 参考訳(メタデータ) (2025-07-07T08:00:18Z) - SCAN: Semantic Document Layout Analysis for Textual and Visual Retrieval-Augmented Generation [5.458935851230595]
テキストおよび視覚的検索・拡張生成(RAG)システムを強化した新しいアプローチであるSCANを提案する。
SCANは、ドキュメントを連続的なコンポーネントをカバーする一貫性のある領域に分割する、粗い粒度のセマンティックアプローチを使用する。
英語と日本語のデータセットを対象とした実験の結果、SCANの適用により、エンドツーエンドのRAG性能が最大9.0%向上し、ビジュアルRAG性能が最大6.4%向上することが示された。
論文 参考訳(メタデータ) (2025-05-20T14:03:24Z) - QID: Efficient Query-Informed ViTs in Data-Scarce Regimes for OCR-free Visual Document Understanding [53.69841526266547]
トレーニング済みのVision-Language Modelを新しいデータセットで微調整することは、ビジョンエンコーダの最適化に不足することが多い。
視覚エンコーダにクエリの埋め込みを統合する,新しい,合理化されたアーキテクチャ保存アプローチであるQIDを導入する。
論文 参考訳(メタデータ) (2025-04-03T18:47:16Z) - GeAR: Generation Augmented Retrieval [82.20696567697016]
本稿では,新しい方法であるtextbfGe$nerationを紹介する。
対照的な学習を通じて、グローバルなドキュメントクエリの類似性を改善すると同時に、よく設計されたフュージョンとデコードモジュールを統合する。
検索機として使用する場合、GeARはバイエンコーダよりも計算コストがかかることはない。
論文 参考訳(メタデータ) (2025-01-06T05:29:00Z) - Advanced ingestion process powered by LLM parsing for RAG system [0.0]
本稿では LLM を利用した OCR を用いたマルチストラテジー解析手法を提案する。
この手法はノードベースの抽出手法を用いて、異なる情報タイプ間の関係を作り、コンテキスト対応メタデータを生成する。
論文 参考訳(メタデータ) (2024-12-16T20:33:33Z) - Developing Retrieval Augmented Generation (RAG) based LLM Systems from PDFs: An Experience Report [3.4632900249241874]
本稿では,PDF文書を主データ源とする検索拡張生成システム(RAG)の開発経験報告について述べる。
RAGアーキテクチャは、Large Language Models (LLM) の生成能力と情報検索の精度を組み合わせたものである。
この研究の実際的な意味は、様々な分野における生成AIシステムの信頼性を高めることである。
論文 参考訳(メタデータ) (2024-10-21T12:21:49Z) - VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented Generation (RAG) は、大規模言語モデルが外部知識ソースを生成に活用できる効果的な手法である。
本稿では、視覚言語モデル(VLM)に基づくRAGパイプラインを確立することにより、この問題に対処するVisRAGを紹介する。
このパイプラインでは、まず文書を解析してテキストを得る代わりに、VLMを画像として直接埋め込んで、VLMの生成を強化する。
論文 参考訳(メタデータ) (2024-10-14T15:04:18Z) - Meta Knowledge for Retrieval Augmented Large Language Models [0.0]
大規模言語モデル(LLM)のための新しいデータ中心型RAGワークフローを提案する。
提案手法は,各文書にメタデータと合成質問文(QA)を生成することに依存する。
合成質問マッチングによる拡張クエリの使用は、従来のRAGパイプラインよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2024-08-16T20:55:21Z) - Bridging Information Asymmetry in Text-video Retrieval: A Data-centric Approach [56.610806615527885]
テキストビデオ検索(TVR)における重要な課題は、ビデオとテキスト間の情報非対称性である。
本稿では,このギャップを埋めるために,テキスト表現を豊かにすることで,映像コンテンツの豊かさに合わせたデータ中心のフレームワークを提案する。
本稿では,最も関連性が高く多様なクエリを識別し,計算コストを低減し,精度を向上するクエリ選択機構を提案する。
論文 参考訳(メタデータ) (2024-08-14T01:24:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。