論文の概要: Emotionally-Aware Agents for Dispute Resolution
- arxiv url: http://arxiv.org/abs/2509.04465v1
- Date: Thu, 28 Aug 2025 22:52:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-14 20:41:04.891521
- Title: Emotionally-Aware Agents for Dispute Resolution
- Title(参考訳): 紛争解決のための感情認識エージェント
- Authors: Sushrita Rakshit, James Hale, Kushal Chawla, Jeanne M. Brett, Jonathan Gratch,
- Abstract要約: 本稿では、自動テキスト感情認識が紛争解決の文脈において、この影響について洞察を与えるかどうかを考察する。
我々は,主観的・客観的な結果の感情表現がどのように形成されるかを調べるために,買い手と売り手の論争対話の大規模なコーパスを使用する。
- 参考スコア(独自算出の注目度): 5.761488011589221
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In conflict, people use emotional expressions to shape their counterparts' thoughts, feelings, and actions. This paper explores whether automatic text emotion recognition offers insight into this influence in the context of dispute resolution. Prior work has shown the promise of such methods in negotiations; however, disputes evoke stronger emotions and different social processes. We use a large corpus of buyer-seller dispute dialogues to investigate how emotional expressions shape subjective and objective outcomes. We further demonstrate that large-language models yield considerably greater explanatory power than previous methods for emotion intensity annotation and better match the decisions of human annotators. Findings support existing theoretical models for how emotional expressions contribute to conflict escalation and resolution and suggest that agent-based systems could be useful in managing disputes by recognizing and potentially mitigating emotional escalation.
- Abstract(参考訳): 対立においては、人々は感情表現を使って相手の思考、感情、行動を形成する。
本稿では、自動テキスト感情認識が紛争解決の文脈において、この影響について洞察を与えるかどうかを考察する。
先行研究は交渉においてそのような方法の可能性を示してきたが、論争は強い感情と異なる社会的プロセスを引き起こす。
我々は,主観的・客観的な結果の感情表現がどのように形成されるかを調べるために,買い手と売り手の論争対話の大規模なコーパスを使用する。
さらに、感情強度アノテーションの従来の手法よりも大きな説明力が得られることを実証し、人間のアノテータの判断によく一致することを示す。
感情表現がコンフリクトエスカレーションと解決にどのように貢献するかに関する既存の理論モデルをサポートし、エージェントベースのシステムは感情的なエスカレーションを認識し、軽減することで紛争を管理するのに有用である可能性を示唆している。
関連論文リスト
- ECR-Chain: Advancing Generative Language Models to Better Emotion-Cause Reasoners through Reasoning Chains [61.50113532215864]
CEE(Causal Emotion Entailment)は、ターゲット発話で表現される感情を刺激する会話における因果発話を特定することを目的としている。
CEEにおける現在の研究は、主に会話のセマンティックな相互作用と感情的な相互作用をモデル化することに焦点を当てている。
本研究では,会話中の感情表現から刺激を推測するために,ステップバイステップの推論手法である感情・因果関係(ECR-Chain)を導入する。
論文 参考訳(メタデータ) (2024-05-17T15:45:08Z) - CauESC: A Causal Aware Model for Emotional Support Conversation [79.4451588204647]
既存のアプローチは、苦痛の感情の原因を無視します。
彼らは、話者間の相互作用における感情的ダイナミクスよりも、探究者自身の精神状態に焦点を当てている。
本稿では、まず、苦痛の感情要因と、その原因によって引き起こされる感情効果を認識する新しいフレームワークCauESCを提案する。
論文 参考訳(メタデータ) (2024-01-31T11:30:24Z) - E-CORE: Emotion Correlation Enhanced Empathetic Dialogue Generation [33.57399405783864]
本稿では,感情相関を改良した共感対話生成フレームワークを提案する。
具体的には、文脈に基づく感情の相互作用を捉えるために、マルチレゾリューション感情グラフを考案した。
そこで我々は,感情相関強化デコーダを提案し,新しい相関認識アグリゲーションとソフト/ハード戦略を提案する。
論文 参考訳(メタデータ) (2023-11-25T12:47:39Z) - Think Twice: A Human-like Two-stage Conversational Agent for Emotional Response Generation [16.659457455269127]
感情対話生成のための2段階対話エージェントを提案する。
まず,感情アノテートされた対話コーパスを使わずに訓練された対話モデルを用いて,文脈意味に合致するプロトタイプ応答を生成する。
第二に、第一段階のプロトタイプは共感仮説で制御可能な感情精錬器によって修正される。
論文 参考訳(メタデータ) (2023-01-12T10:03:56Z) - Contrast and Generation Make BART a Good Dialogue Emotion Recognizer [38.18867570050835]
対話型感情認識において、話者依存との長期的文脈的感情関係が重要な役割を担っている。
教師付きコントラスト学習を用いて、異なる感情を相互に排他的に区別し、類似した感情をよりよく識別する。
我々は、文脈情報を扱うモデルの能力を高めるために補助応答生成タスクを利用する。
論文 参考訳(メタデータ) (2021-12-21T13:38:00Z) - Perspective-taking and Pragmatics for Generating Empathetic Responses
Focused on Emotion Causes [50.569762345799354]
i) 相手の感情が発話から引き起こされる原因となる単語を特定することと, (ii) 応答生成における特定の単語を反映することである。
社会的認知からインスピレーションを得て、生成的推定を用いて、感情が単語レベルのラベルのない発話から単語を推論する。
論文 参考訳(メタデータ) (2021-09-18T04:22:49Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
マルチモーダル感情認識(MER)のいくつかの重要な側面について論じる。
まず、広く使われている感情表現モデルと感情モダリティの簡単な紹介から始める。
次に、既存の感情アノテーション戦略とそれに対応する計算タスクを要約する。
最後に,実世界のアプリケーションについて概説し,今後の方向性について論じる。
論文 参考訳(メタデータ) (2021-08-18T21:55:20Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
実世界のデータを用いた実験により,提案手法は,コンテンツコヒーレンスと感情の適切性の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T06:26:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。