論文の概要: Evaluating Cognitive-Behavioral Fixation via Multimodal User Viewing Patterns on Social Media
- arxiv url: http://arxiv.org/abs/2509.04823v1
- Date: Fri, 05 Sep 2025 05:50:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-08 14:27:25.489978
- Title: Evaluating Cognitive-Behavioral Fixation via Multimodal User Viewing Patterns on Social Media
- Title(参考訳): ソーシャルメディア上でのマルチモーダル・ユーザ・ビューング・パターンによる認知行動的定着の評価
- Authors: Yujie Wang, Yunwei Zhao, Jing Yang, Han Han, Shiguang Shan, Jie Zhang,
- Abstract要約: 本稿では,ユーザのマルチモーダルなソーシャルメディアエンゲージメントパターンを分析し,認知行動の定着を評価する新しい枠組みを提案する。
既存のベンチマークと、新しくキュレートされたマルチモーダルデータセットの実験は、我々のアプローチの有効性を実証している。
- 参考スコア(独自算出の注目度): 52.313084466769375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital social media platforms frequently contribute to cognitive-behavioral fixation, a phenomenon in which users exhibit sustained and repetitive engagement with narrow content domains. While cognitive-behavioral fixation has been extensively studied in psychology, methods for computationally detecting and evaluating such fixation remain underexplored. To address this gap, we propose a novel framework for assessing cognitive-behavioral fixation by analyzing users' multimodal social media engagement patterns. Specifically, we introduce a multimodal topic extraction module and a cognitive-behavioral fixation quantification module that collaboratively enable adaptive, hierarchical, and interpretable assessment of user behavior. Experiments on existing benchmarks and a newly curated multimodal dataset demonstrate the effectiveness of our approach, laying the groundwork for scalable computational analysis of cognitive fixation. All code in this project is publicly available for research purposes at https://github.com/Liskie/cognitive-fixation-evaluation.
- Abstract(参考訳): デジタルソーシャルメディアプラットフォームは、ユーザが狭いコンテンツドメインとの持続的かつ反復的なエンゲージメントを示す現象である認知行動固定にしばしば貢献する。
認知行動固定法は心理学において広く研究されているが、そのような固定法を計算的に検出し評価する方法はいまだ研究されていない。
このギャップに対処するために,ユーザのマルチモーダルなソーシャルメディアエンゲージメントパターンを分析し,認知行動の定着を評価する新しい枠組みを提案する。
具体的には、ユーザ行動の適応的、階層的、解釈可能な評価を可能にするマルチモーダルトピック抽出モジュールと認知行動固定量化モジュールを導入する。
既存のベンチマークと、新たにキュレートされたマルチモーダルデータセットによる実験により、我々のアプローチの有効性が示され、認知的固定のスケーラブルな計算解析の基礎を築いた。
このプロジェクトのすべてのコードは、https://github.com/Liskie/cognitive-fixation-evaluationで研究目的で公開されている。
関連論文リスト
- Stochastic Encodings for Active Feature Acquisition [100.47043816019888]
Active Feature Acquisitionは、インスタンスワイドでシーケンシャルな意思決定問題である。
目的は、テストインスタンスごとに独立して、現在の観測に基づいて計測する機能を動的に選択することである。
一般的なアプローチは強化学習(Reinforcement Learning)であり、トレーニングの困難を経験する。
我々は、教師付きで訓練された潜在変数モデルを導入し、潜在空間における観測不能な実現の可能性の多くにまたがる特徴を推論することで獲得する。
論文 参考訳(メタデータ) (2025-08-03T23:48:46Z) - Dynamic Programming Techniques for Enhancing Cognitive Representation in Knowledge Tracing [125.75923987618977]
認知表現動的プログラミングに基づく知識追跡(CRDP-KT)モデルを提案する。
質問の難易度とそれらの間の性能間隔に基づいて認知表現を最適化する動的プログラミングアルゴリズムである。
これは、その後のモデルトレーニングのためにより正確で体系的な入力機能を提供し、それによって認知状態のシミュレーションにおける歪みを最小限にする。
論文 参考訳(メタデータ) (2025-06-03T14:44:48Z) - A Comprehensive Review on Hashtag Recommendation: From Traditional to Deep Learning and Beyond [0.37865171120254354]
ハッシュタグは、基本的な分類メカニズムとして、コンテンツの可視性とユーザエンゲージメントを高める上で重要な役割を果たす。
正確で堅牢なハッシュタグレコメンデーションシステムの開発は、依然として複雑で進化中の研究課題である。
本稿では,ハッシュタグレコメンデーションシステムの体系的解析を行い,近年のいくつかの側面にわたる進歩について検討する。
論文 参考訳(メタデータ) (2025-03-24T13:40:36Z) - How Metacognitive Architectures Remember Their Own Thoughts: A Systematic Review [16.35521789216079]
メタ認知は、人工エージェントの自律性と適応性を高める可能性に大きな注目を集めている。
既存の概要は、基礎となるアルゴリズム、表現、そしてそれぞれの成功に気付かない概念レベルに留まっている。
論文 参考訳(メタデータ) (2025-02-28T08:48:41Z) - DeepFace-Attention: Multimodal Face Biometrics for Attention Estimation with Application to e-Learning [18.36413246876648]
本研究では,Webカメラビデオに適用した顔分析手法のアンサンブルを用いて,注意レベル(認知的負荷)を推定する革新的な手法を提案する。
我々のアプローチは、最先端の顔分析技術を適用し、ユーザの認知的負荷を、高い注意や低い注意の形で定量化する。
提案手法は,mEBAL2ベンチマークを用いて,既存の最先端の精度を向上する。
論文 参考訳(メタデータ) (2024-08-10T11:39:11Z) - A Unified Comparison of User Modeling Techniques for Predicting Data
Interaction and Detecting Exploration Bias [17.518601254380275]
我々は,4つのユーザスタディデータセットの多種多様なセットにおいて,その性能に基づいて8つのユーザモデリングアルゴリズムを比較し,ランク付けする。
本研究は,ユーザインタラクションの分析と可視化のためのオープンな課題と新たな方向性を強調した。
論文 参考訳(メタデータ) (2022-08-09T19:51:10Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。