論文の概要: Should We Always Train Models on Fine-Grained Classes?
- arxiv url: http://arxiv.org/abs/2509.05130v1
- Date: Fri, 05 Sep 2025 14:15:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-08 14:27:25.609566
- Title: Should We Always Train Models on Fine-Grained Classes?
- Title(参考訳): きめ細かい授業で模型を常に訓練すべきか?
- Authors: Davide Pirovano, Federico Milanesio, Michele Caselle, Piero Fariselli, Matteo Osella,
- Abstract要約: 細粒度ラベルのトレーニングは、分類精度を普遍的に向上しないことを示す。
この戦略の有効性は、データの幾何学的構造とラベル階層との関係に大きく依存する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In classification problems, models must predict a class label based on the input data features. However, class labels are organized hierarchically in many datasets. While a classification task is often defined at a specific level of this hierarchy, training can utilize a finer granularity of labels. Empirical evidence suggests that such fine-grained training can enhance performance. In this work, we investigate the generality of this observation and explore its underlying causes using both real and synthetic datasets. We show that training on fine-grained labels does not universally improve classification accuracy. Instead, the effectiveness of this strategy depends critically on the geometric structure of the data and its relations with the label hierarchy. Additionally, factors such as dataset size and model capacity significantly influence whether fine-grained labels provide a performance benefit.
- Abstract(参考訳): 分類問題では、モデルが入力データの特徴に基づいてクラスラベルを予測しなければならない。
しかし、クラスラベルは多くのデータセットで階層的に整理される。
分類タスクはこの階層の特定のレベルで定義されることが多いが、トレーニングはラベルのより細かい粒度を利用することができる。
このような微粒な訓練がパフォーマンスを高めるという実証的な証拠がある。
本研究では,本研究の一般性について検討し,実データと合成データの両方を用いてその根本原因を探究する。
細粒度ラベルのトレーニングは、分類精度を普遍的に向上しないことを示す。
代わりに、この戦略の有効性は、データの幾何学的構造とそのラベル階層との関係に批判的に依存する。
さらに、データセットのサイズやモデルキャパシティなどの要因は、きめ細かいラベルがパフォーマンス上のメリットをもたらすかどうかに大きく影響します。
関連論文リスト
- Posterior Label Smoothing for Node Classification [2.737276507021477]
本稿では,トランスダクティブノード分類タスクに対して,単純かつ効果的なラベル平滑化を提案する。
本研究では, ソフトラベルを設計し, 周辺ラベル分布を通じて対象ノードの局所的コンテキストをカプセル化する。
以下の分析結果から,大域的なラベル統計を後続計算に組み込むことが,ラベル平滑化の成功の鍵であることが判明した。
論文 参考訳(メタデータ) (2024-06-01T11:59:49Z) - Association Graph Learning for Multi-Task Classification with Category
Shifts [68.58829338426712]
関連する分類タスクが同じラベル空間を共有し、同時に学習されるマルチタスク分類に焦点を当てる。
我々は、不足クラスのためのタスク間で知識を伝達する関連グラフを学習する。
我々の手法は代表的基準よりも一貫して性能が良い。
論文 参考訳(メタデータ) (2022-10-10T12:37:41Z) - Preserving Fine-Grain Feature Information in Classification via Entropic
Regularization [10.358087436626391]
標準的なクロスエントロピーは、粗い機能に過度に適合する可能性があることを示す。
エントロピーに基づく正規化を導入し、訓練されたモデルの特徴空間におけるさらなる多様性を促進する。
論文 参考訳(メタデータ) (2022-08-07T09:25:57Z) - Use All The Labels: A Hierarchical Multi-Label Contrastive Learning
Framework [75.79736930414715]
本稿では,すべての利用可能なラベルを活用でき,クラス間の階層的関係を維持できる階層型多言語表現学習フレームワークを提案する。
比較損失に階層的ペナルティを併用し,その階層的制約を強制する。
論文 参考訳(メタデータ) (2022-04-27T21:41:44Z) - Debiased Pseudo Labeling in Self-Training [77.83549261035277]
ディープニューラルネットワークは、大規模ラベル付きデータセットの助けを借りて、幅広いタスクで顕著なパフォーマンスを達成する。
ラベル付きデータの要求を軽減するため、ラベル付けされていないデータに擬似ラベルを付けることにより、学術と産業の両方で自己学習が広く使われている。
疑似ラベルの生成と利用を2つの独立した頭文字で分離するデバイアスドを提案する。
論文 参考訳(メタデータ) (2022-02-15T02:14:33Z) - Highly Efficient Representation and Active Learning Framework for
Imbalanced Data and its Application to COVID-19 X-Ray Classification [0.7829352305480284]
胸部X線を分類するためのデータ効率の高い分類および能動的学習フレームワークを提案する。
これは(1)畳み込みニューラルネットワークの教師なし表現学習と(2)ガウス過程法に基づいている。
利用可能なラベルのトレーニングから正確性に到達するには、ラベル付きデータの10%の$simしか必要ありません。
論文 参考訳(メタデータ) (2021-02-25T02:48:59Z) - Inducing a hierarchy for multi-class classification problems [11.58041597483471]
分類的ラベルが自然な階層に従ったアプリケーションでは、ラベル構造を利用する分類方法は、そうでないものをしばしば上回る。
本稿では,フラット分類器に対する分類性能を向上できる階層構造を誘導する手法のクラスについて検討する。
原理シミュレーションと3つの実データアプリケーションにおいて、潜入階層の発見と精度向上のためのメソッドのクラスの有効性を実証する。
論文 参考訳(メタデータ) (2021-02-20T05:40:42Z) - Label Confusion Learning to Enhance Text Classification Models [3.0251266104313643]
ラベル混乱モデル(lcm)はラベル間の意味的重複を捉えるためにラベル混乱を学習する。
lcmは、元のホットラベルベクトルを置き換えるより優れたラベル分布を生成することができる。
5つのテキスト分類ベンチマークデータセットの実験により、広く使われているディープラーニング分類モデルに対するLCMの有効性が明らかにされた。
論文 参考訳(メタデータ) (2020-12-09T11:34:35Z) - Text Classification Using Label Names Only: A Language Model
Self-Training Approach [80.63885282358204]
現在のテキスト分類法は、訓練データとして多くの人ラベルの文書を必要とするのが一般的である。
本モデルでは,トピック分類や感情分類を含む4つのベンチマークデータセットにおいて,約90%の精度が得られた。
論文 参考訳(メタデータ) (2020-10-14T17:06:41Z) - Hierarchical Image Classification using Entailment Cone Embeddings [68.82490011036263]
まずラベル階層の知識を任意のCNNベースの分類器に注入する。
画像からの視覚的セマンティクスと組み合わせた外部セマンティクス情報の利用が全体的な性能を高めることを実証的に示す。
論文 参考訳(メタデータ) (2020-04-02T10:22:02Z) - Structured Prediction with Partial Labelling through the Infimum Loss [85.4940853372503]
弱い監督の目標は、収集コストの安いラベル付け形式のみを使用してモデルを学習できるようにすることである。
これは、各データポイントに対して、実際のものを含むラベルのセットとして、監督がキャストされる不完全なアノテーションの一種です。
本稿では、構造化された予測と、部分的なラベリングを扱うための無限損失の概念に基づく統一的なフレームワークを提供する。
論文 参考訳(メタデータ) (2020-03-02T13:59:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。