論文の概要: Less is More Tokens: Efficient Math Reasoning via Difficulty-Aware Chain-of-Thought Distillation
- arxiv url: http://arxiv.org/abs/2509.05226v1
- Date: Fri, 05 Sep 2025 16:40:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-08 14:27:25.65446
- Title: Less is More Tokens: Efficient Math Reasoning via Difficulty-Aware Chain-of-Thought Distillation
- Title(参考訳): より少ないもの:難易度を意識した蒸留による効率的な数学的推論
- Authors: Abdul Waheed, Chancharik Mitra, Laurie Z. Wang, Deva Ramanan, Bhiksha Raj,
- Abstract要約: 本稿では,問題複雑性に基づいてモデルに推論深度を動的に調整する難易度推論の枠組みを提案する。
モデルにそのような動的推論経路を与えることができ、アーキテクチャ上の変更を加えることなく実現可能であることを示す。
- 参考スコア(独自算出の注目度): 82.2288581878096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chain-of-thought reasoning, while powerful, can produce unnecessarily verbose output for simpler problems. We present a framework for difficulty-aware reasoning that teaches models to dynamically adjust reasoning depth based on problem complexity. Remarkably, we show that models can be endowed with such dynamic inference pathways without any architectural modifications; we simply post-train on data that is carefully curated to include chain-of-thought traces that are proportional in length to problem difficulty. Our analysis reveals that post-training via supervised fine-tuning (SFT) primarily captures patterns like reasoning length and format, while direct preference optimization (DPO) preserves reasoning accuracy, with their combination reducing length and maintaining or improving performance. Both quantitative metrics and qualitative assessments confirm that models can learn to "think proportionally", reasoning minimally on simple problems while maintaining depth for complex ones.
- Abstract(参考訳): 連鎖推論は強力ではあるが、単純な問題に対して不要に冗長な出力を生成することができる。
本稿では,問題複雑性に基づいてモデルに推論深度を動的に調整する難易度推論の枠組みを提案する。
注目すべきは、モデルにそのような動的推論経路をアーキテクチャ上の変更を加えることなく提供できることである。
分析の結果、教師付き微調整(SFT)による後学習は、主に推論の長さやフォーマットなどのパターンを捉え、一方、直接選好最適化(DPO)は推論の精度を保ち、それらの組み合わせは長さを減らし、性能を維持または改善することがわかった。
定量的メトリクスと定性的評価の両方が、モデルは「比例的に考える」ことを学べることを確認し、複雑な問題に対する深さを維持しながら、単純な問題に最小限の理由付けをする。
関連論文リスト
- The Challenge of Teaching Reasoning to LLMs Without RL or Distillation [31.973226821366325]
推論可能な言語モデルは、長く明示的なChain-of-Thoughtトレースを生成することで、様々な複雑なタスクにおいて最先端のパフォーマンスを達成する。
我々は、プロンプトや最小限のチューニングのみを用いて、ベースモデルでCoTを誘導できるかどうかを問う。
結果として得られたモデルは、はるかに大きなtexttQwen2.5-Math-72B-Instruct よりも優れており、いくつかの高品質な例が強力な推論能力を解き放つ可能性があることを示している。
論文 参考訳(メタデータ) (2025-07-14T01:14:50Z) - PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThinkは、外部から推定されるタスクの難しさと内部で測定されたモデルの不確実性を統合する、シンプルで効果的なスキームである。
シーンの複雑さと予測信頼度に応じて推論の長さを圧縮することを学ぶ。
実験により,提案手法は推論効率と全体セグメンテーション性能の両方を改善した。
論文 参考訳(メタデータ) (2025-05-29T17:55:49Z) - Self-Route: Automatic Mode Switching via Capability Estimation for Efficient Reasoning [36.470695895695044]
Self-Routeは、一般的な推論モードと推論モードを自動的に選択する動的推論フレームワークである。
トークン消費量を30~55%削減しながら,自己ルートが推論モデルに匹敵する精度を実現していることを示す。
論文 参考訳(メタデータ) (2025-05-27T03:18:31Z) - Climbing the Ladder of Reasoning: What LLMs Can-and Still Can't-Solve after SFT? [59.418994222096885]
AIME24データセット上でモデル性能の詳細な解析を行う。
我々は質問を4段階(易、中、硬、極度硬)に分類する。
我々は,SFT-1Kインスタンスが最小限であるR1推論スタイルを採用する必要があることを見出した。
エクレベルの質問は、根本的に異なる課題を示します。
論文 参考訳(メタデータ) (2025-04-16T03:39:38Z) - Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching [60.04718679054704]
Chain-of-Thoughtはステップバイステップの問題解決を促すが、中間出力の過剰な冗長性を犠牲にすることが多い。
我々は,認知にインスパイアされた推論パラダイムを言語制約と統合する促進フレームワークであるSketch-of-Thought(SoT)を提案する。
SoTはトークンを最大78%削減し、15の推論データセットで最小限の精度損失を発生させる。
論文 参考訳(メタデータ) (2025-03-07T06:57:17Z) - DAST: Difficulty-Adaptive Slow-Thinking for Large Reasoning Models [30.184895117009457]
本稿では,問題の難易度に基づいて,モデルが自律的にChain-of-Thought(CoT)の長さを調整できる,DAST(Difficulty-Adaptive Slow Thinking)を提案する。
多様なデータセットとモデルスケールの実験により、DASTは複雑な問題に対する推論精度を維持しながら、過剰思考を効果的に軽減することを示した。
論文 参考訳(メタデータ) (2025-03-06T14:23:06Z) - When More is Less: Understanding Chain-of-Thought Length in LLMs [51.631483479081645]
大規模言語モデル(LLM)は複雑な問題を分解するためにChain-of-Thought(CoT)推論を用いる。
本稿は、長いCoTがより優れていると仮定されることがしばしばあり、長いCoTが常に優れているとは限らない、と論じる。
論文 参考訳(メタデータ) (2025-02-11T05:28:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。