論文の概要: Rethinking LLM Parametric Knowledge as Post-retrieval Confidence for Dynamic Retrieval and Reranking
- arxiv url: http://arxiv.org/abs/2509.06472v1
- Date: Mon, 08 Sep 2025 09:37:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:04.036563
- Title: Rethinking LLM Parametric Knowledge as Post-retrieval Confidence for Dynamic Retrieval and Reranking
- Title(参考訳): LLMパラメトリック知識の再考 : 動的検索と再評価のための検索後の信頼度
- Authors: Haoxiang Jin, Ronghan Li, Qiguang Miao, Zixiang Lu,
- Abstract要約: 大規模言語モデル(LLM)は、知識の範囲を超えて疑問に直面したとき、しばしば不正確な応答(幻覚)を生成する。
Retrieval-Augmented Generation (RAG)は、外部知識を活用することでこの問題に対処するが、重要な課題は、検索されたコンテキストが特定のクエリに応答する能力を効果的に強化するかどうかである。
この課題は知識境界認識の重要性を浮き彫りにしており、これは現在の手法が個別のラベルや限られた信号障害に適切に対処する方法である。
- 参考スコア(独自算出の注目度): 23.1400319714807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) often generate inaccurate responses (hallucinations) when faced with questions beyond their knowledge scope. Retrieval-Augmented Generation (RAG) addresses this by leveraging external knowledge, but a critical challenge remains: determining whether retrieved contexts effectively enhance the model`s ability to answer specific queries. This challenge underscores the importance of knowledge boundary awareness, which current methods-relying on discrete labels or limited signals-fail to address adequately, as they overlook the rich information in LLMs` continuous internal hidden states. To tackle this, we propose a novel post-retrieval knowledge filtering approach. First, we construct a confidence detection model based on LLMs` internal hidden states to quantify how retrieved contexts enhance the model`s confidence. Using this model, we build a preference dataset (NQ_Rerank) to fine-tune a reranker, enabling it to prioritize contexts preferred by the downstream LLM during reranking. Additionally, we introduce Confidence-Based Dynamic Retrieval (CBDR), which adaptively triggers retrieval based on the LLM`s initial confidence in the original question, reducing knowledge conflicts and improving efficiency. Experimental results demonstrate significant improvements in accuracy for context screening and end-to-end RAG performance, along with a notable reduction in retrieval costs while maintaining competitive accuracy.
- Abstract(参考訳): 大規模言語モデル(LLM)は、知識の範囲を超えて疑問に直面したとき、しばしば不正確な応答(幻覚)を生成する。
Retrieval-Augmented Generation (RAG)は、外部の知識を活用することでこの問題に対処するが、重要な課題が残る。
この課題は知識境界認識の重要性を浮き彫りにしており、これは現在の手法が個別のラベルや限られた信号に頼って適切な対応をし、LLMの豊富な情報を見落としているためである。
そこで本研究では,検索後の知識フィルタリング手法を提案する。
まず、LLMの内部隠れ状態に基づく信頼度検出モデルを構築し、検索したコンテキストがモデルの信頼度を高める方法の定量化を行う。
このモデルを用いて、リランカを微調整するための選好データセット(NQ_Rerank)を構築し、リランク時に下流LLMが好むコンテキストを優先順位付けできるようにする。
さらに, 信頼性に基づく動的検索 (CBDR) を導入し, LLMの当初の質問に対する信頼度に基づく検索を適応的にトリガし, 知識衝突を低減し, 効率を向上する。
実験結果から,コンテクストスクリーニングとエンドツーエンドRAG性能の精度が向上し,競争精度を維持しつつ,検索コストの大幅な削減が図られた。
関連論文リスト
- ParamMute: Suppressing Knowledge-Critical FFNs for Faithful Retrieval-Augmented Generation [91.20492150248106]
本研究では,不誠実な生成の背後にある内部メカニズムを解明し,不均等に活性化される中深度フィードフォワードネットワーク(FFN)のサブセットを同定する。
本研究では,不信感関連FFNの活性化を抑制することにより,文脈的忠実度を向上させるフレームワークであるParametric Knowledge Mutingを提案する。
実験結果から,ParamMuteはCoFaithfulQAと確立されたConFiQAベンチマークの両方の信頼度を大幅に向上し,パラメトリックメモリへの依存度を大幅に低下させることが示された。
論文 参考訳(メタデータ) (2025-02-21T15:50:41Z) - Towards Fully Exploiting LLM Internal States to Enhance Knowledge Boundary Perception [58.62352010928591]
大きな言語モデル(LLM)は様々なタスクにまたがって優れたパフォーマンスを示すが、しばしば知識境界を正確に測定するのに苦労する。
本稿では,LLMの内部状態を有効利用して,効率性やリスクの観点から知識境界に対する認識を高める方法について検討する。
論文 参考訳(メタデータ) (2025-02-17T11:11:09Z) - Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) は、大規模言語モデル(LLM)の限界を軽減し、ドメイン固有の質問に答える手段として広く採用されている。
これまでの研究は主に、取得したデータチャンクの精度と品質を改善し、生成パイプライン全体のパフォーマンスを向上させることに重点を置いてきた。
オープンドメイン質問応答における無関係情報検索の効果について検討し,LLM出力の品質に対する顕著な有害な影響を明らかにする。
論文 参考訳(メタデータ) (2024-11-25T06:48:38Z) - Rejection Improves Reliability: Training LLMs to Refuse Unknown Questions Using RL from Knowledge Feedback [14.120154004011084]
LLM(Large Language Models)はしばしば幻覚と呼ばれる誤った出力を生成する。
知識フィードバックによる強化学習(Reinforcement Learning from Knowledge Feedback, RLKF)と呼ばれる新しいアライメントフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-27T08:39:56Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
本稿では,LLMベースのフレームワークであるReEvalについて述べる。
本稿では、ChatGPTを用いてReEvalを実装し、2つの人気のあるオープンドメインQAデータセットのバリエーションを評価する。
我々の生成したデータは人間可読であり、大きな言語モデルで幻覚を引き起こすのに役立ちます。
論文 参考訳(メタデータ) (2023-10-19T06:37:32Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
大規模言語モデルはしばしば「ハロシン化」の課題に直面している
本研究では,不確実性に応答してモデルが出力を拡張あるいは拒否することを可能にする,不確実性を考慮したコンテキスト内学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-07T12:06:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。