論文の概要: SLiNT: Structure-aware Language Model with Injection and Contrastive Training for Knowledge Graph Completion
- arxiv url: http://arxiv.org/abs/2509.06531v1
- Date: Mon, 08 Sep 2025 10:36:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:04.068942
- Title: SLiNT: Structure-aware Language Model with Injection and Contrastive Training for Knowledge Graph Completion
- Title(参考訳): SLiNT:知識グラフ補完のためのインジェクションとコントラストトレーニングによる構造認識言語モデル
- Authors: Mengxue Yang, Chun Yang, Jiaqi Zhu, Jiafan Li, Jingqi Zhang, Yuyang Li, Ying Li,
- Abstract要約: 知識グラフにおけるリンク予測は、欠落したエンティティを推測するために構造情報と意味コンテキストを統合する必要がある。
SLiNTは,知識グラフに基づく構造的コンテキストを,ロラをベースとした軽量な適応型フリーズバックボーンに注入し,堅牢なリンク予測を行うモジュールフレームワークである。
WN18RRとFB15k-237の実験により、SLiNTは埋め込みベースとジェネレーションベースの両方と比較して優れた性能または競争性能を発揮することが示された。
- 参考スコア(独自算出の注目度): 11.686307370683922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Link prediction in knowledge graphs requires integrating structural information and semantic context to infer missing entities. While large language models offer strong generative reasoning capabilities, their limited exploitation of structural signals often results in structural sparsity and semantic ambiguity, especially under incomplete or zero-shot settings. To address these challenges, we propose SLiNT (Structure-aware Language model with Injection and coNtrastive Training), a modular framework that injects knowledge-graph-derived structural context into a frozen LLM backbone with lightweight LoRA-based adaptation for robust link prediction. Specifically, Structure-Guided Neighborhood Enhancement (SGNE) retrieves pseudo-neighbors to enrich sparse entities and mitigate missing context; Dynamic Hard Contrastive Learning (DHCL) introduces fine-grained supervision by interpolating hard positives and negatives to resolve entity-level ambiguity; and Gradient-Decoupled Dual Injection (GDDI) performs token-level structure-aware intervention while preserving the core LLM parameters. Experiments on WN18RR and FB15k-237 show that SLiNT achieves superior or competitive performance compared with both embedding-based and generation-based baselines, demonstrating the effectiveness of structure-aware representation learning for scalable knowledge graph completion.
- Abstract(参考訳): 知識グラフにおけるリンク予測は、欠落したエンティティを推測するために構造情報と意味コンテキストを統合する必要がある。
大きな言語モデルは強力な生成的推論能力を提供するが、構造的信号の限られた利用は、しばしば構造的疎さと意味的曖昧さ、特に不完全またはゼロショット設定下で生じる。
これらの課題に対処するため,我々は,知識グラフに基づく構造的コンテキストをLLMバックボーンに注入するモジュール型フレームワークであるSLiNT(Structure-aware Language model with Injection and coNtrastive Training)を提案する。
具体的には、SGNE(Structure-Guided Neborhood Enhancement)は、スパースエンティティを充実させ、不足コンテキストを緩和するために擬似隣人を検索し、動的ハードコントラスト学習(Dynamic Hard Contrastive Learning, DHCL)は、エンティティレベルの曖昧さを解決するためにハードポジティとネガティブを補間することできめ細かな監督を導入し、グラディエントデカップリングデュアルインジェクション(GDDI)は、中核LLMパラメータを保存しながらトークンレベルの構造認識の介入を行う。
WN18RR と FB15k-237 の実験により,SLiNT は組込みベースと世代ベースの両方と比較して優れた性能を示し,スケーラブルな知識グラフ補完のための構造認識表現学習の有効性を示した。
関連論文リスト
- Do We Really Need GNNs with Explicit Structural Modeling? MLPs Suffice for Language Model Representations [50.45261187796993]
グラフニューラルネットワーク(GNN)は構造情報を十分に活用できないが、MLP(Multi-Layer Perceptrons)は構造認識タスクにおいて驚くべき能力を示す。
本稿では,情報理論の観点から総合的な探索フレームワークを提案する。
論文 参考訳(メタデータ) (2025-06-26T18:10:28Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling [39.14392943549792]
本稿では,階層型プロンプトチューニング(HPT)と呼ばれる新しい手法を提案し,構造化知識と従来の言語知識の同時モデリングを可能にする。
低レベルの即時学習のためのエンティティと属性間のペアワイズ関連をキャプチャする、関係誘導型アテンションモジュールを導入する。
全体意味論をモデル化する高レベルかつグローバルレベルのプロンプトを取り入れることで、提案された階層構造は、クロスレベルな相互リンクを偽造し、より複雑で長期的な関係を扱うようにモデルに権限を与える。
論文 参考訳(メタデータ) (2024-08-27T06:50:28Z) - Multi-View Empowered Structural Graph Wordification for Language Models [12.22063024099311]
本稿では,LLM-graphアライメントのためのエンドツーエンドのモダリティアライメントフレームワークについて紹介する。
提案手法は LLM とのトークンレベルアライメントを容易にするために設計されており,グラフの内在的' を理解可能な自然言語に効果的に翻訳することができる。
我々のフレームワークは、LLMとGNN間のトークンレベルのアライメントを実現するための、有望な試みである、ある視覚的解釈可能性、効率、堅牢性を保証する。
論文 参考訳(メタデータ) (2024-06-19T16:43:56Z) - Learning Hierarchical Prompt with Structured Linguistic Knowledge for
Vision-Language Models [43.56153167864033]
大規模言語モデル(LLM)における構造化知識を活用する新しい手法を提案する。
低レベルの即時学習のためのエンティティと属性間のペアワイズ関連をキャプチャする、関係誘導型アテンションモジュールを導入する。
さらに、高レベルのプロンプトとグローバルレベルのプロンプトを組み込むことで、提案された階層構造は、クロスレベルのインターリンクを偽造し、より複雑で長期的な関係を扱うようにモデルに権限を与える。
論文 参考訳(メタデータ) (2023-12-11T12:14:06Z) - Prompt-based Logical Semantics Enhancement for Implicit Discourse
Relation Recognition [4.7938839332508945]
Inlicit Discourse Relation Recognition (IDRR) のための Prompt-based Logical Semantics Enhancement (PLSE) 法を提案する。
提案手法は,事前学習した言語モデルに対する対話関係に関する知識を,素早い接続予測によってシームレスに注入する。
PDTB 2.0 と CoNLL16 データセットによる実験結果から,本手法は現状の最先端モデルに対して優れた一貫した性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-11-01T08:38:08Z) - MoCoSA: Momentum Contrast for Knowledge Graph Completion with
Structure-Augmented Pre-trained Language Models [11.57782182864771]
構造強化事前学習言語モデル(MoCoSA)を用いた知識グラフ補完のためのMomentum Contrastを提案する。
また,WN18RRでは2.5%,OpenBG500では21%向上した。
論文 参考訳(メタデータ) (2023-08-16T08:09:10Z) - Physics of Language Models: Part 1, Learning Hierarchical Language Structures [51.68385617116854]
トランスフォーマーベースの言語モデルは効率的だが複雑であり、内部の動作や推論メカニズムを理解することは大きな課題である。
本稿では,長文を生成可能な階層規則を生成する合成CFGのファミリーを紹介する。
我々は、GPTのような生成モデルがCFG定義階層を正確に学習し、推論し、それに基づいて文を生成することを実証する。
論文 参考訳(メタデータ) (2023-05-23T04:28:16Z) - Structure-CLIP: Towards Scene Graph Knowledge to Enhance Multi-modal
Structured Representations [70.41385310930846]
マルチモーダルな構造表現を強化するためのエンドツーエンドフレームワークであるStructure-CLIPを提案する。
シーングラフを用いてセマンティックなネガティブな例の構築をガイドし、その結果、構造化された表現の学習に重点を置いている。
知識エンハンス(KEE)は、SGKを入力として活用し、構造化表現をさらに強化するために提案される。
論文 参考訳(メタデータ) (2023-05-06T03:57:05Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
本稿では, PLM を用いた自己回帰的手法を用いて, モデル構造を行動列として記述する。
我々のアプローチは、私たちが見てきた全ての構造化予測タスクにおいて、新しい最先端を実現する。
論文 参考訳(メタデータ) (2022-10-26T13:27:26Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
本稿では,データ効率のよい知識グラフ構築のためのRAP(Schema-Aware Reference As Prompt)の検索手法を提案する。
RAPは、人間の注釈付きおよび弱教師付きデータから受け継いだスキーマと知識を、各サンプルのプロンプトとして動的に活用することができる。
論文 参考訳(メタデータ) (2022-10-19T16:40:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。