論文の概要: Benchmarking EfficientTAM on FMO datasets
- arxiv url: http://arxiv.org/abs/2509.06536v1
- Date: Mon, 08 Sep 2025 10:41:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:04.073032
- Title: Benchmarking EfficientTAM on FMO datasets
- Title(参考訳): FMOデータセット上での効率的なTAMのベンチマーク
- Authors: Senem Aktas, Charles Markham, John McDonald, Rozenn Dahyot,
- Abstract要約: まず,Fast Objects(FMO)イメージの4つのオープンソースデータセットに関連するメタデータファイルを紹介する。
我々は、FMOのデータセットを、オブジェクトサイズ情報を含むシーケンス形式(FMOX)で、追加の基底真理情報で記述する。
- 参考スコア(独自算出の注目度): 1.5866079116942815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fast and tiny object tracking remains a challenge in computer vision and in this paper we first introduce a JSON metadata file associated with four open source datasets of Fast Moving Objects (FMOs) image sequences. In addition, we extend the description of the FMOs datasets with additional ground truth information in JSON format (called FMOX) with object size information. Finally we use our FMOX file to test a recently proposed foundational model for tracking (called EfficientTAM) showing that its performance compares well with the pipelines originally taylored for these FMO datasets. Our comparison of these state-of-the-art techniques on FMOX is provided with Trajectory Intersection of Union (TIoU) scores. The code and JSON is shared open source allowing FMOX to be accessible and usable for other machine learning pipelines aiming to process FMO datasets.
- Abstract(参考訳): 本稿では,高速移動オブジェクト(FMO)イメージシーケンスの4つのオープンソースデータセットに関連付けられたJSONメタデータファイルを紹介する。
さらに、FMOのデータセットの記述を、オブジェクトサイズ情報を含むJSONフォーマット(FMOXと呼ばれる)で、基礎的な真理情報を追加して拡張する。
最後に、FMOXファイルを使用して、最近提案された追跡のための基礎モデル(EfficientTAMと呼ばれる)をテストする。
FMOX(Trajectory Intersection of Union)スコアを用いて,これらの技術との比較を行った。
コードとJSONはオープンソースで共有されており、FMOXにアクセスでき、FMOデータセットの処理を目的とした他の機械学習パイプラインで使用することができる。
関連論文リスト
- Scaling Up Diffusion and Flow-based XGBoost Models [5.944645679491607]
本稿では,XGBoostを拡散・流れマッチングモデルにおける関数近似器として利用するための最近の提案について検討する。
より優れた実装では、以前よりも370倍大きなデータセットにスケールできる。
我々は,Fast Calorimeter Simulation Challengeの一環として,大規模科学的データセットについて報告する。
論文 参考訳(メタデータ) (2024-08-28T18:00:00Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
グラフニューラルネットワーク(GNN)の統一最適化フレームワーク内で設計されたtextsfFair textsfMessage textsfPassing(FMP)を提案する。
FMPでは、アグリゲーションがまず隣人の情報を活用するために採用され、バイアス軽減ステップにより、人口集団ノードのプレゼンテーションセンタが明示的に統合される。
ノード分類タスクの実験により、提案されたFMPは、実世界の3つのデータセットの公平性と正確性の観点から、いくつかのベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-19T18:00:15Z) - EMOFM: Ensemble MLP mOdel with Feature-based Mixers for Click-Through
Rate Prediction [5.983194751474721]
データセットには数百万のレコードが含まれており、レコード内の各フィールドワイド機能は、プライバシのためのハッシュされた整数で構成されている。
このタスクのために、ネットワークベースの手法のキーは、異なるフィールドにまたがるタイプワイドな特徴抽出と情報融合であるかもしれない。
フィールド/タイプワイド機能融合のためのプラグインミキサーを提案し、フィールド/タイプワイドアンサンブルモデル、すなわちEMOFMを構築する。
論文 参考訳(メタデータ) (2023-10-06T12:32:23Z) - Fast Non-Rigid Radiance Fields from Monocularized Data [66.74229489512683]
本稿では,不規則に変形するシーンを360度内向きに合成する新しい手法を提案する。
提案手法のコアとなるのは, 空間情報と時間情報の処理を分離し, 訓練と推論を高速化する効率的な変形モジュール, 2) 高速ハッシュ符号化ニューラルラジオアンスフィールドとしての標準シーンを表す静的モジュールである。
どちらの場合も,本手法は従来の手法よりもはるかに高速で,7分未満で収束し,1K解像度でリアルタイムのフレームレートを実現するとともに,生成した新規なビューに対して高い視覚的精度が得られる。
論文 参考訳(メタデータ) (2022-12-02T18:51:10Z) - FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in
Realistic Healthcare Settings [51.09574369310246]
Federated Learning(FL)は、センシティブなデータを保持している複数のクライアントが協力して機械学習モデルをトレーニングできる新しいアプローチである。
本稿では,医療分野に重点を置くクロスサイロ・データセット・スイートFLambyを提案し,クロスサイロ・FLの理論と実践のギャップを埋める。
私たちのフレキシブルでモジュラーなスイートによって、研究者は簡単にデータセットをダウンロードし、結果を再現し、研究のためにさまざまなコンポーネントを再利用することができます。
論文 参考訳(メタデータ) (2022-10-10T12:17:30Z) - iffDetector: Inference-aware Feature Filtering for Object Detection [70.8678270164057]
Inference-aware Feature Filtering (IFF)モジュールを導入し、現代の検出器と簡単に組み合わせることができる。
IFFは、畳み込み機能を強化するためにハイレベルなセマンティクスを活用することでクローズドループ最適化を行う。
IFFはCNNベースの物体検出器とプラグアンドプレイ方式で融合でき、計算コストのオーバーヘッドは無視できる。
論文 参考訳(メタデータ) (2020-06-23T02:57:29Z) - In the Eye of the Beholder: Gaze and Actions in First Person Video [30.54510882243602]
本研究では,ヘッドウーンカメラで撮影した映像の分析に基づいて,人が何をしているか,どこに見ているのかを共同で決定する課題に対処する。
私たちのデータセットには、ビデオ、視線追跡データ、ハンドマスク、アクションアノテーションが含まれています。
第一人物視における共同視線推定と行動認識のための新しい深層モデルを提案する。
論文 参考訳(メタデータ) (2020-05-31T22:06:06Z) - Open Graph Benchmark: Datasets for Machine Learning on Graphs [86.96887552203479]
スケーラブルで堅牢で再現可能なグラフ機械学習(ML)の研究を容易にするために,Open Graph Benchmark(OGB)を提案する。
OGBデータセットは大規模で、複数の重要なグラフMLタスクを含み、さまざまなドメインをカバーする。
各データセットに対して,有意義なアプリケーション固有のデータ分割と評価指標を用いた統一評価プロトコルを提供する。
論文 参考訳(メタデータ) (2020-05-02T03:09:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。