論文の概要: MIORe & VAR-MIORe: Benchmarks to Push the Boundaries of Restoration
- arxiv url: http://arxiv.org/abs/2509.06803v1
- Date: Mon, 08 Sep 2025 15:34:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:04.218662
- Title: MIORe & VAR-MIORe: Benchmarks to Push the Boundaries of Restoration
- Title(参考訳): MIORe & VAR-MIORe: リストアの境界を推し進めるベンチマーク
- Authors: George Ciubotariu, Zhuyun Zhou, Zongwei Wu, Radu Timofte,
- Abstract要約: 動作回復ベンチマークの限界に対処する2つの新しいマルチタスクデータセットであるMIOReとVAR-MIOReを紹介する。
私たちのデータセットは、複雑なエゴカメラの動き、動的マルチオブジェクト相互作用、深さ依存のぼかし効果など、幅広い動きシナリオを捉えています。
- 参考スコア(独自算出の注目度): 53.180212987726556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce MIORe and VAR-MIORe, two novel multi-task datasets that address critical limitations in current motion restoration benchmarks. Designed with high-frame-rate (1000 FPS) acquisition and professional-grade optics, our datasets capture a broad spectrum of motion scenarios, which include complex ego-camera movements, dynamic multi-subject interactions, and depth-dependent blur effects. By adaptively averaging frames based on computed optical flow metrics, MIORe generates consistent motion blur, and preserves sharp inputs for video frame interpolation and optical flow estimation. VAR-MIORe further extends by spanning a variable range of motion magnitudes, from minimal to extreme, establishing the first benchmark to offer explicit control over motion amplitude. We provide high-resolution, scalable ground truths that challenge existing algorithms under both controlled and adverse conditions, paving the way for next-generation research of various image and video restoration tasks.
- Abstract(参考訳): 動作回復ベンチマークの限界に対処する2つの新しいマルチタスクデータセットであるMIOReとVAR-MIOReを紹介する。
高フレームレート (1000 FPS) の取得とプロフェッショナルグレードの光学系によって設計され、我々のデータセットは、複雑なエゴカメラの動き、動的マルチオブジェクト相互作用、深度に依存しないブラー効果を含む、幅広い動きシナリオをキャプチャする。
計算された光フローメトリクスに基づいてフレームを適応的に平均化することにより、MIOReは一貫した動きのぼかしを生成し、ビデオフレーム補間および光フロー推定のためのシャープな入力を保持する。
VAR-MIOReはさらに、極小から極小までの様々な運動量の範囲にまたがって拡張され、運動振幅を明示的に制御する最初のベンチマークが確立された。
我々は、制御された状況と悪条件の両方で既存のアルゴリズムに挑戦する高解像度でスケーラブルな地上真実を提供し、様々な画像およびビデオ復元タスクの次世代研究の道を開く。
関連論文リスト
- LightMotion: A Light and Tuning-free Method for Simulating Camera Motion in Video Generation [56.64004196498026]
LightMotionは、ビデオ生成におけるカメラモーションをシミュレートするための軽量かつチューニング不要な方法である。
潜在空間で操作すると、追加の微調整、塗装、深さ推定がなくなる。
論文 参考訳(メタデータ) (2025-03-09T08:28:40Z) - Motion-Aware Generative Frame Interpolation [23.380470636851022]
フローベースのフレーム法は、推定中間フローを通しての運動安定性を保証するが、複雑な動き領域で深刻なアーティファクトを導入することが多い。
大規模な事前学習ビデオ生成モデルによって強化された最近の生成的アプローチは、複雑なシーンの処理において有望であることを示している。
本研究では、中間フロー誘導と生成能力を相乗化して忠実度を高める動き認識生成フレーム(MoG)を提案する。
論文 参考訳(メタデータ) (2025-01-07T11:03:43Z) - Motion-prior Contrast Maximization for Dense Continuous-Time Motion Estimation [34.529280562470746]
コントラスト最大化フレームワークと非直線運動を組み合わせた新たな自己監督的損失を画素レベルの軌跡の形で導入する。
連続時間運動の高密度推定では, 合成学習モデルのゼロショット性能を29%向上する。
論文 参考訳(メタデータ) (2024-07-15T15:18:28Z) - Motion-Aware Video Frame Interpolation [49.49668436390514]
我々は、連続するフレームから中間光の流れを直接推定する動き対応ビデオフレーム補間(MA-VFI)ネットワークを導入する。
受容場が異なる入力フレームからグローバルな意味関係と空間的詳細を抽出するだけでなく、必要な計算コストと複雑さを効果的に削減する。
論文 参考訳(メタデータ) (2024-02-05T11:00:14Z) - Video frame interpolation for high dynamic range sequences captured with
dual-exposure sensors [24.086089662881044]
ビデオフレーム(VFI)は、時間領域を含む多くの重要なアプリケーションを可能にする。
重要な課題の1つは、複雑な動きの存在下で高いダイナミックレンジシーンを扱うことである。
論文 参考訳(メタデータ) (2022-06-19T20:29:34Z) - TimeLens: Event-based Video Frame Interpolation [54.28139783383213]
本稿では,合成法とフロー法の両方の利点を生かした,等価寄与法であるTime Lensを紹介する。
最先端のフレームベースおよびイベントベース手法よりもPSNRが最大5.21dB向上したことを示す。
論文 参考訳(メタデータ) (2021-06-14T10:33:47Z) - Motion-blurred Video Interpolation and Extrapolation [72.3254384191509]
本稿では,映像から鮮明なフレームをエンドツーエンドに切り離し,補間し,外挿する新しい枠組みを提案する。
予測フレーム間の時間的コヒーレンスを確保し,潜在的な時間的あいまいさに対処するために,単純で効果的なフローベースルールを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:18:25Z) - FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation [97.99012124785177]
FLAVRは、3D空間時間の畳み込みを使用して、ビデオフレームのエンドツーエンドの学習と推論を可能にする柔軟で効率的なアーキテクチャです。
FLAVRは、アクション認識、光フロー推定、モーション拡大のための有用な自己解釈タスクとして役立つことを実証します。
論文 参考訳(メタデータ) (2020-12-15T18:59:30Z) - 0-MMS: Zero-Shot Multi-Motion Segmentation With A Monocular Event Camera [13.39518293550118]
本稿では,ボトムアップ機能トラッキングとトップダウン動作補償を組み合わせたモノラルなマルチモーションセグメンテーション手法を提案する。
時間間隔内でのイベントを用いて、本手法はシーンを分割とマージによって複数の動作に分割する。
このアプローチは、EV-IMO、EED、MODデータセットから、挑戦的な現実シナリオと合成シナリオの両方で評価された。
論文 参考訳(メタデータ) (2020-06-11T02:34:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。